
DeepPhase: Periodic Autoencoders for Learning Motion Phase Manifolds

SEBASTIAN STARKE, Electronic Arts and The University of Edinburgh
IAN MASON, The University of Edinburgh
TAKU KOMURA, The University of Hong Kong

Fig. 1. A selection of different animation tasks that can be realistically synthesized by learning their motion phase manifolds visualized in the center.

Learning the spatial-temporal structure of body movements is a fundamental
problem for character motion synthesis. In this work, we propose a novel
neural network architecture called the Periodic Autoencoder that can learn
periodic features from large unstructured motion datasets in an unsuper-
vised manner. The character movements are decomposed into multiple latent
channels that capture the non-linear periodicity of different body segments
while progressing forward in time. Our method extracts a multi-dimensional
phase space from full-body motion data, which effectively clusters anima-
tions and produces a manifold in which computed feature distances provide a
better similarity measure than in the original motion space to achieve better
temporal and spatial alignment. We demonstrate that the learned periodic
embedding can significantly help to improve neural motion synthesis in
a number of tasks, including diverse locomotion skills, style-based move-
ments, dance motion synthesis from music, synthesis of dribbling motions
in football, and motion query for matching poses within large animation
databases.

CCS Concepts: • Computing methodologies → Motion capture; Neural
networks.

Additional Key Words and Phrases: neural networks, human motion, char-
acter animation, character control, character interactions, deep learning

ACM Reference Format:
Sebastian Starke, Ian Mason, and Taku Komura. 2022. DeepPhase: Periodic
Autoencoders for Learning Motion Phase Manifolds. ACM Trans. Graph. 41,
4, Article 1 (July 2022), 13 pages. https://doi.org/10.1145/3528223.xxxxxxx

Authors’ addresses: Sebastian Starke, Electronic Arts, sstarke@ea.com, The University
of Edinburgh, sebastian.starke@ed.ac.uk; Ian Mason, The University of Edinburgh,
s1639786@sms.ed.ac.uk; Taku Komura, taku@cs.hku.hk, The University of Hong Kong.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
© 2020 Copyright held by the owner/author(s).
0730-0301/2022/7-ART1
https://doi.org/10.1145/3528223.xxxxxxx

1 INTRODUCTION
Learning the spatial-temporal structure of the motion space allows
for the interpolation of motion data and the production of realistic
transitions within and between different types of motions. A signif-
icant amount of work has been introduced in the area of computer
animation and machine learning for modeling the motion space for
various tasks in motion prediction, synthesis and control. The mo-
tion space is a field where each sample in the space is collected from
motion capture data. Methods to learn continuous spaces have been
proposed, though they often suffer from smoothed-out motions and
poor responsiveness.
The difficulty of learning the structure of the motion space lies

in the sparsity of the data and the highly nonlinear structure of
the space. Indeed, motion capture data are fundamentally sparse.
Although parts of the data, where the subject is conducting a single
type of locomotion such as walking or running, are dense, tran-
sitions between different types of motions are very limited. This
makes modelling the interpolations or transitions between different
motion types difficult. When updating the state of the character, by
interpolating the samples in the neighborhood, the system tends
to sample states forwards and backwards in time causing the char-
acter to stagnate. Alternatively, transitioning to states that are far
away can cause the updates to diverge to spaces where there are no
samples. This means that data-driven models that generate motions
for character control tasks may produce over-smoothed or erratic
movements as the similarity in the motion space does not generally
represent their similarity in time.

To cope with this issue, we focus on the local periodicity of char-
acter motion both in time and in space. This is one of the key char-
acteristics required for producing a smooth and continuous motion
space. As a result, it is beneficial to consider such periodicity for
modelling the motion space for motion synthesis, prediction and
analysis. More specifically, cyclic motions such as walking or run-
ning are periodic, but motions such as grasping, punching, sitting
and jumping or transitions between walking and running can also

ACM Trans. Graph., Vol. 41, No. 4, Article 1. Publication date: July 2022.

https://doi.org/10.1145/3528223.xxxxxxx
https://doi.org/10.1145/3528223.xxxxxxx

1:2 • Starke et al.

be considered (temporally) locally periodic, assuming that they are
temporal slices of periodic motions or transitions between peri-
odic motions. Beyond that, full-body movements can happen as a
composition of multiple (spatially) local periodic movements. For
human/quadruped motion, it is often the case that the motion is not
driven by a single phase signal but by a combination of multiple
local phase signals, such as when waving the hand or manipulating
objects while walking, wagging the tail while running, or dancing a
complex choreography where arms, legs or even hips and head may
be moving at different timing and frequency. Such local periodic-
ity allows us to build a general motion manifold structure whose
parameters are composed of phase, frequency, offset and amplitude.
In this work, we propose a novel neural network architecture

called the Periodic Autoencoder that can learn periodic features from
large unstructured motion datasets in an unsupervised manner. Neu-
rologists and neuroscientists believe that the interaction between
the musculoskeletal system, environmental stimuli and central pat-
tern generator neural circuitry (that produces periodic pulse signals)
together generate signals for locally periodic locomotion [Dimitri-
jevic et al. 1998; Yuste et al. 2005]. Inspired by this, the character
movements are decomposed into multiple latent channels that cap-
ture the non-linear periodicity of different body segments during
synchronous, asynchronous and transition movements while pro-
gressing forward in time. Our method extracts a multi-dimensional
phase space from full-body motion data, which effectively clusters
animations and produces a manifold in which computed feature
distances provide a better similarity measure than in the original
motion space which helps achieve better temporal and spatial align-
ment. This feature space is more compact than the original motion
data and a future pose can be sampled from the past pose by time-
frequency increments. During training, each latent phase channel
becomes tuned for different local movements and essentially acts
as a band-pass filter for different ranges of learned frequency and
amplitude values.
We demonstrate that the learned periodic embedding can sig-

nificantly enhance data-driven character animation for a number
of tasks, including diverse locomotion skills, stylized movements,
dance motion synthesis from music, synthesis of dribbling motion
in football (see Fig. 1). We show benefits of using our learned phase
manifold when generating such motions with neural character con-
trollers, as well as when applied to motion query tasks for matching
poses within large animation databases in order to scale with the
growing amounts of motion data available.

The key contributions of this paper can be summarized as follows:

• A novel neural network architecture, called the Periodic Au-
toencoder, that transforms unstructured charactermovements
into a periodic manifold that effectively represents the align-
ment of full-body motion in space and time.

• A demonstration of applying the learned feature space for
various tasks in character animation, including real-time syn-
thesis of biped/quadruped locomotion, stylistic movements,
dance motion from music, football dribbling, as well as effec-
tive motion query in motion matching.

• An evaluation of the learned phase space in comparison with
existing state-of-the-art animation systems.

2 RELATED WORK
We first review classic works on learning from motion capture data
for animation purposes. We then review works that use neural
networks and large motion capture datasets to learn how to model
motion and relate these approaches with the one herein. Finally
we review works that focus on learning motions in the frequency
domain.

Learning from Motion Capture Data. Classic methods to learn
from motion capture data align the motions along the timeline and
interpolate them with linear interpolation [Wiley and Hahn 1997],
radial basis functions [Rose et al. 1998; Rose III et al. 2001] and
Gaussian processes [Mukai and Kuriyama 2005]. As interpolating
all motions could be computationally expensive, samples found by
nearest neighbor search [Kovar and Gleicher 2004] are often used.
When interpolating motions, aligning the movements along the
timeline is needed to produce a motion that follows the constraints
given by the user.

Another type of motion that may be learned from motion capture
data is the transition from one class of motion to another, such as
from idle to walk/run, walk to sit, etc. For this purpose, similarities
between poses are computed by comparing the state vectors either
based on joint angles/angular velocities or joint positions/velocities.
Motion graph approaches [Arikan and Forsyth 2002; Kovar et al.
2008; Lee et al. 2002] construct a graph structure of movements
based on such distance metrics. In these methods, the synthesized
motions are only a series of play-backs of the original motion cap-
ture data and no novel motions are synthesized. For achieving both
good interpolation and good transitions, methods to enhancemotion
graph methods by interpolating motions of the same class/transition
have been proposed [Heck and Gleicher 2007; Min and Chai 2012;
Safonova and Hodgins 2007; Shin and Oh 2006]. These approaches
require a significant amount of data preprocessing, where the mo-
tions of the same type need to be aligned along the timeline, and in
most cases they require manual adjustments.
The discrete nature of graphs introduces disadvantages such as

slow responses to quick changes in user instructions or unexpected
disturbances, or difficulty starting from arbitrary states. Continuous
representations have been introduced to cope with such issues. Mo-
tion fields [Lee et al. 2010] searches for nearest neighbors after sam-
pling a pose in the high-dimensional vector field of human motion
and interpolates them to update the state. Reinforcement learning
is applied for constructing a controller that outputs the action that
follows the user control signal. Levine et al. [2012] construct a la-
tent space from the motion data, which reduces the dimensionality
for reinforcement learning. Cho et al. [2021] apply VQ-VAE [Oord
et al. 2017] to cluster the actions and states to reduce the cost of
reinforcement learning. Motion matching [Clavet 2016] follows the
idea of motion fields [Lee et al. 2010] but simply picks the nearest
neighbor clip that matches the current state and follows the user
instruction. This allows for more flexible transitions and improves
the responsiveness of the character. Lee et al. [2021b] train a student
policy using a dataset produced by motion matching to generate a
time-critical policy. The low dimensional features computed by our
method can be applied for motion matching and also potentially for
reinforcement learning.

ACM Trans. Graph., Vol. 41, No. 4, Article 1. Publication date: July 2022.

DeepPhase: Periodic Autoencoders for Learning Motion Phase Manifolds • 1:3

Fig. 2. Network architecture of the Periodic Autoencoder for extracting multi-dimensional phase manifolds from unstructured motion data.

Motion Synthesis by Neural Networks. A recent branch of machine
learning methods for motion synthesis are those that make use of
neural networks. Compared to classic machine learning techniques
these methods are better able to scale with increasing data quantities.
Techniques based on temporal convolution [Holden et al. 2016, 2015],
recurrent models [Harvey et al. 2020; Lee et al. 2018], feedforward
networks [Holden et al. 2017; Starke et al. 2019, 2020], generative
models [Henter et al. 2020; Li et al. 2021; Ling et al. 2020; Valle-Pérez
et al. 2021] and deep reinforcement learning [Cho et al. 2021; Lee et al.
2021a; Peng et al. 2018, 2016, 2017] have all been developed. However,
in general the difficulty of neural motion synthesis remains in the
ambiguity of the future and the alignment of the motion along
the timeline. Without overcoming these problems, the synthesized
motion tends to appear smoothed out and blurry. For reducing
the ambiguity in future, methods to provide descriptive control
signals [Harvey et al. 2020; Holden et al. 2016; Lee et al. 2018] or
generative models have been effective [Henter et al. 2020; Li et al.
2021; Valle-Pérez et al. 2021]. Our paper focuses on the problem of
alignment of the motion along the timeline.

One of the streams of methods designed to improve the alignment
of movements along the timeline involves providing phase variables
that describe the progression of the motion. Phase-functioned Neu-
ral Networks (PFNN) [Holden et al. 2017] condition the network
weights on a phase variable defined based on foot-ground contacts
in bipedal locomotion. This factorization aligns every frame of the
motion in the dataset and allows smooth transitioning between
arbitrary frames in different types of locomotion. Starke et al. [2019]
extend this concept to other classes of motions such as carrying
objects, sitting on chairs and opening a door. As providing a global
phase label for complex motions that involve multiple contacts,
such as dribbling a ball, is difficult, Starke et al. [2020] propose to
provide the local phase for each limb. On the other hand, such an
approach is only applicable for movements that involve contacts,
many motions such as dancing or walking in different styles do not
contain contacts for the hands, and how to define phases for such
movements has been an issue. Another challenge with phases based
on contacts is that they require careful tuning of thresholds for

computing the phase labels. Mason et al [2022] use a PCA heuristic
to compute the local phase of cyclic arm movements during locomo-
tion, although a different heuristic would be needed for arbitrary
movements. Instead, in this research, we propose an architecture to
learnmulti-dimensional phase variables from arbitrary unstructured
motion capture data.

Another topic that is actively being researched is physically-based
motion tracking [Bergamin et al. 2019; Fussell et al. 2021; Lee et al.
2021a; Luo et al. 2020; Merel et al. 2020; Park et al. 2019; Peng et al.
2018, 2016, 2017; Won et al. 2020]. These methods provide solu-
tions for tracking kinematic motion capture data by computing the
torques that produce motions similar to the kinematic reference mo-
tion. A small set of kinematic motions can produce a wide variation
of movements due to physics constraints, such as when maintaining
balance whilst being perturbed by external forces. It is known that
phase inputs are also effective for such a setup [Peng et al. 2018].
GAN models to synthesize motions in the physical domain are also
proposed [Ho and Ermon 2016; Peng et al. 2021], though they may
suffer from domain collapse, which inhibits them from being applied
for a wide range of movements. Our objective is to cover a wide
range of the motion space using the motion model itself rather than
relying on physics. The techniques developed in this research can
also be applied for synthesizing reference motions for physics-based
tracking.

Motion Synthesis in the Frequency Domain. Finally, we review
methods that represent motions in the frequency domain, as we
also predict spectral parameters of the motion. Frequency domain
approaches have been proposed for motion synthesis [Liu et al.
1994], editing [Bruderlin and Williams 1995], stylization [Unuma
et al. 1995; Yumer and Mitra 2016] and compression [Beaudoin
et al. 2007]. These methods mostly apply edits to each degree of
freedom, and do not compute features that represent the correlation
of different parts of the body. Our idea in this research is to construct
a latent space using an encoder and then applying a frequency
domain conversion as an inductive bias. By applying our approach,
we can extract periodic latent parameters that represent the full-
body motion.

ACM Trans. Graph., Vol. 41, No. 4, Article 1. Publication date: July 2022.

1:4 • Starke et al.

3 PERIODIC AUTOENCODER
In this section, we describe the structure of the Periodic Autoencoder
that computes periodic latent vectors from the original motion data,
which form the phase manifold. We first describe the structure of
the network, then the phase manifold formed by the network and
finally the training process of the network.

3.1 Network Structure
To transform the motion space into a learned phase manifold, we
utilize a temporal convolutional autoencoder architecture structure
similar to Holden et al. [2015]. However, as well as training the
model to reconstruct input, we additionally enforce each channel
of the latent space to be in the form of a periodic function, which
allows us to learn a phase variable for each latent channel from a
small set of parameters. Our network architecture is shown in Fig. 2.
The temporal data is divided into overlapping windows of length 𝑁
with corresponding centered time window T . 1

Given the input motion curves,X ∈ R𝐷×𝑁 where𝐷 is the degrees
of freedom of the body and 𝑁 is the number of frames of X, we
train an encoder, 𝑔, that uses 1𝐷 convolutions to learn a lower-
dimensional embedding of the motion,

L = 𝑔(X). (1)

L ∈ R𝑀×𝑁 , where𝑀 is the number of latent channels, that is, the
number of desired phase channels to be extracted from the motion.

We enforce periodicity by parameterizing each latent curve in L
as a sinusoidal function, defined by amplitude (A), frequency (F),
offset (B) and phase shift (S) parameters. To compute A, F,B ∈ R𝑀
we use a differentiable real Fast Fourier Transform (FFT) layer. We
apply the FFT to each channel of L and create the zero-indexed
matrix of Fourier coefficients c ∈ C𝑀×𝐾+1, 𝐾 = ⌊𝑁2 ⌋, and then
apply element-wise operations to compute the per channel power
spectrum p ∈ R𝑀×𝐾+1:

c = 𝐹𝐹𝑇 (L), p𝑖, 𝑗 =
2
𝑁
|c𝑖, 𝑗 |2, (2)

where 𝑖 is the channel index and 𝑗 is the index for the frequency
bands. The corresponding parameters are then given by

A𝑖 =

√√√√
2
𝑁

𝐾∑︁
𝑗=1

p𝑖, 𝑗 , F𝑖 =

∑𝐾
𝑗=1 (f𝑗 · p𝑖, 𝑗)∑𝐾

𝑗=1 p𝑖, 𝑗
, B𝑖 =

c𝑖,0
𝑁
, (3)

where f = (0, 1/𝑇, 2/𝑇, . . . , 𝐾/𝑇) is a vector of frequencies. These
operations provide the shape parameters to construct the 𝑀 pe-
riodic functions within the time window, but do not yet include
the timing, that is, the phase shifts of the functions. To obtain this
timing parameter, we learn a separate fully-connected (FC) layer for
each latent curve that predicts only the signed phase shift S ∈ R𝑀 at
the central frame of T via an intermediate two-dimensional vector:

(𝑠𝑥 , 𝑠𝑦) = 𝐹𝐶 (L𝑖), S𝑖 = atan2(𝑠𝑦, 𝑠𝑥), (4)

where 𝑖 is the channel index.
From learned parameters F, A, B and S, along with the known

time window T , it is possible to reconstruct a parameterized latent
1We collect 𝑁 evenly spaced samples of data within a centered time window T =[
− 𝑡1−𝑡0

2 ,− 𝑡1−𝑡0
2 + 𝑡1−𝑡0

𝑁−1 ,−
𝑡1−𝑡0

2 + 2(𝑡1−𝑡0)
𝑁−1 , . . . ,

𝑡1−𝑡0
2

]
, where 𝑡0 ≤ 𝑡 ≤ 𝑡1 .

space L̂ in form of multiple periodic functions that has the same
shape dimensionality as the original latent embedding using the
parameterization function 𝑓 :

L̂ = 𝑓 (T ;A, F,B, S) = A · sin(2𝜋 · (F · T − S)) + B (5)

Finally, the network decodes the parameterized latent space using
1𝐷 deconvolutions in decoder, ℎ, to map back to the original input
motion curves:

Y = ℎ(L̂) . (6)

The network is trained using the reconstruction loss between the
original and predicted motion curves:

L = 𝑀𝑆𝐸 (X,Y). (7)

This induces the network to learn the time alignment of poses across
different motion clips and assigns a changing phase to each new
frame of motion in a one-directional manner. To see why, consider
a window of motion centred at frame 𝑡 , extracted from some longer
motion clip and encoded to create L̂. The parameters A, F and B
constrain the shape of the periodic signals and the network has
to learn to position the curves correctly using S. For a window of
motion centred at frame 𝑡 + 1, extracted from the same motion clip,
we expect that any changes in A, F and B will be very small (see
Fig. 3), so 𝑆 needs to progress to keep the latent space aligned with
the motion since the same convolutional decoder is used. That is,
the model effectively has to learn to predict 2D vectors rotating in a
clockwise direction to change the values of the periodic embedding
from which it needs to reconstruct the input curves.

Another possibility to construct the phase manifold is to learn the
periodic parameters directly by the network instead of using an FFT
layer: we experimented this but not only the phase parameters but
also the amplitude and frequency oscillate a lot along time, resulting
in a very noisy phase manifold. Learning the conversion of signals
into the frequency domain seems not easy, and using the FFT layer
significantly stabilizes the learning process.

Fig. 3. Learned parameters for phase, amplitude, frequency and offset for
a fixed window of motion during network training to reconstruct the input
motion, and from which the phase manifold can be constructed.

ACM Trans. Graph., Vol. 41, No. 4, Article 1. Publication date: July 2022.

DeepPhase: Periodic Autoencoders for Learning Motion Phase Manifolds • 1:5

Fig. 4. Distribution of amplitudes and frequencies of learned phase chan-
nels. Each channel becomes tuned for a specific range of amplitudes and
frequencies to decompose the motion, roughly acting like a set of learned
band-pass filters. Note that there were no parameter ranges predefined for
each phase channel, but they are extracted as needed by the model.

3.2 Phase Manifold
We now describe how the phase manifold is formed using the peri-
odic latent variables computed with the Periodic Autoencoder.
After network training, the periodic parameters for an unstruc-

tured motion dataset can be computed per frame by shifting the
Periodic Autoencoder along the motion curves. The periodic param-
eters represent the local periodicity of the latent variables: using
them we form a phase manifold P of dimensionality R2𝑀 , where a
sample at frame 𝑡 is computed by

P (𝑡)
2𝑖−1 = A(𝑡)

𝑖
· sin(2𝜋 · S(𝑡)

𝑖
), P (𝑡)

2𝑖 = A(𝑡)
𝑖

· cos(2𝜋 · S(𝑡)
𝑖

). (8)
The features in P well describe the timing of the frame within

the input motion X and greatly help to align motions within the
same class or across different classes of motions. This means they
can effectively function as an input feature for neural motion syn-
thesis or motion matching, we will present such usage and results
in Section 4 and Section 5. The phase variables of ten channels
within a short time window for an example motion clip are plot-
ted in Fig. 3. It can be observed that each channel learns features
for different frequencies, which correspond to different speeds of
movements. We plot the distribution of amplitudes and frequencies
of each channel in Fig. 4. We can observe that each phase channel
learns to extract different ranges of amplitude and frequency values
across the movements. The system can encode various details or
patterns of motion, which is useful for temporal alignment.
Given a motion sequence, the periodic feature smoothly shifts

over the phase manifold. Since the amplitude and frequency of each
phase channel can alter over time, the Periodic Autoencoder can
encode non-periodic motions as well as periodic motions, such as
transitions from one type of motion to another. Such non-periodic
transitions or motion behaviors may be observed in form of ampli-
tudes increasing or decreasing for different channels (i.e. a human
walking and starting to wave hands), or asynchronous changes in
phase shift or frequency (i.e. transitioning between pace and trot for
quadrupeds). Fig. 5 demonstrates such examples where the phases

Fig. 5. Extracted phase space for an entire animation clip containing dif-
ferent football motion behaviors. Each row is one phase channel for which
the height defines the phase value and the opacity represents the phase
amplitude. Since the parameters are learned individually for each motion
frame as a function of time, non-linear transitions of the periodic phase
parameters can be extracted to optimally align the movements across dif-
ferent animation clips.

can exhibit cyclic or acyclic patterns throughout an entire motion
clip.
The reason to define the phase manifold as in Eq. (8) instead of

separately using all parameters such as the frequency, amplitude
and phase is that we wish the phase features to cluster the ani-
mations in both space and time. Features such as frequency and
amplitude remain near-constant over time, and does not help well
for alignment purpose. Transforming them into a hyperspherical
space using Eq. (8) achieves such a space-time alignment where
A and S define the point in that space and F can be represented
by a window of such points. This transformation also constructs
a continuous interpolation space: While 1D phase values are dis-
continuous and may become undefined if no motion is performed,
encoding them as 2D vectors enables transitioning to the origin of
the manifold at zero amplitude.

3.3 Network Training
To train the Periodic Autoencoder, we use the 3D joint velocity
trajectories as input to the network, each of them transformed into
the root space of the character [Holden et al. 2017]. We subtract a
window-based mean to center the motion curves, but do not apply
any standard deviation scaling in order to maintain the relative
differences. The input data covers 60 frames (1 second) each in the
past and future around the center frame at 60 Hz framerate. This
constructs an input vector 𝑋 ∈ R3· 𝐽 ×𝑁 where J is the number of
character joints and 𝑁 (= 121) is the number of time samples.
For the encoder, 𝑔, we use two convolutional layers, producing

a mapping (3 · 𝐽 × 𝑁) → (𝐽 × 𝑁) → (𝑀 × 𝑁), to compute the
motion curve embedding. Each convolution is followed by a batch
normalization and tanh activation function. Since we directly per-
form operations on the latent space to extract periodic parameters,
we observed that batch normalization significantly helps stabilizing
the training for this task and helps prevent the latent space distribu-
tion from decaying or the model from overfitting when trained for
too long. We further apply a batch normalization to the predicted
phase shift vector before calculating its signed angle. The decoder,
ℎ, again involves two convolutional layers to compute a mapping
(𝑀×𝑁) → (𝐽 ×𝑁) → (3 · 𝐽 ×𝑁), but with batch normalization and
tanh activation applied only after the first deconvolution and not to
the output layer. We train our network using the AdamW optimizer
[Loshchilov and Hutter 2019] for 30 epochs, using a learning rate
and weight decay both of 10−4 and a batch size of 32. Training with a
NVIDIA RTX 3080 GPU typically takes less than an hour for smaller

ACM Trans. Graph., Vol. 41, No. 4, Article 1. Publication date: July 2022.

1:6 • Starke et al.

Fig. 6. Feature distributions for different motion domains in velocity space (top), latent space learned by convolutional + fully connected (middle) and phase
space (bottom) visualized by 2D PCA projection. Each color represents poses from a single motion sequence that are temporally connected.

datasets (∼ 1 hour motion data and ∼ 24 character joints), but may
take longer if the dataset or number of joints becomes larger. For
the number of phase channels, we observed that 5-10 is typically
sufficient depending on the variety of motions in the data. While
for regular biped locomotion five or less phases can be enough,
more phase variables are useful to accurately model more complex
movements such as dancing, quadrupeds, or movements in a large
range of different styles. In our experiments, they are set to 5 (biped,
quadruped locomotion), 10 (styles), 8 (dance) and 6 (football).

4 MOTION CONTROLLERS
We demonstrate the effectiveness of the learned phase variables for
two different character control frameworks: neural networks and
motion matching.

4.1 Neural Motion Controller
For the neural network-based controller, we develop a time series
model that predicts the pose in the current frame given the previous
frame and current user controls. Themodel is trained in a supervised
manner using the motion capture data. We use a Weight-Blended
Mixture-of-Experts framework similar to [Starke et al. 2020; Zhang
et al. 2018], but instead of using the velocities or contact-based local
phases as input to the gating network, we use the phase vectors on
the phase manifold (i.e., Eq. (8)) as input features to generate move-
ments in an autoregressive manner. Giving the phase feature as an
input helps the system align the motion data along the timeline and
allows the character to realistically transition between movements
as we present in Section 5.

The system autoregressively updates the phase state of the char-
acter as well as its motion. The system first predicts the next phase
vectors P𝑡+Δ𝑡 , the amplitudes 𝐴𝑡+Δ𝑡 and frequencies 𝐹𝑡+Δ𝑡 . Instead
of directly using the predicted phase vectors, it is updated as follows:

P ′
𝑡+Δ𝑡 = 𝐴𝑡+Δ𝑡 · 𝐼 (𝑅(𝜃) · P𝑡 ,P𝑡+Δ𝑡), 𝜃 = Δ𝑡 · 2𝜋 · 𝐹𝑡+Δ𝑡 , (9)

where Δ𝑡 is the frame delta time, 𝑅 is a 2D rotation matrix, and 𝐼 is
a spherical linear interpolation with weight 0.5 to enable blending
phase angle and magnitude separately. Updating the phase in such a
manner enforces the frequency to progress the phase in the direction
directly predicted by the neural network. The frequency is a uni-
form positive value that is simple to predict and keeps the network
traversing through the phase space in a one-directional manner
(see Fig. 6). This scheme prevents the motion from appearing stiff
or getting stuck in time, which is a common problem observed for
data-driven character controllers.
The expert gating network learns to blending 8 sets of expert

weights and consists of two hidden layers of size 128. The motion
generation network uses two hidden layers of size 512. Dropout is
set to 0.3, batch size is 32, and both learning rate and weight decay
are initialized as 10−4. We use the AdamWR optimizer [Loshchilov
and Hutter 2019] with cosine annealing warm-restart scheduling,
and set its restart iterations to 10, restart factor to 2.0, and train the
model for 150 epochs. Training each model requires between 12 and
48 hours. The network is implemented in PyTorch and generates an
ONNX file that can be run in Unity for inference using its Barracuda
library.

4.2 Motion Matching
In the context of motion matching, the phases can be used in a simi-
lar manner as for neural networks and do not require changes in the
workflows typical for motion matching. The key difference is that
instead of matching higher-dimensional pose or velocity features of
the current character state, the system matches lower-dimensional
phase vectors to search for the pose at the next frame given the
user control signals, such as the root trajectory. We visualize the
phase features and the velocity features for different motions in
Fig. 6 (see Section 5.1 for further details). The Euclidean distance be-
tween neighbouring points in phase space that are adjacent to each
other is uniform (bottom row), which means that poses matched by
motion matching will have similar differences in time. This enables

ACM Trans. Graph., Vol. 41, No. 4, Article 1. Publication date: July 2022.

DeepPhase: Periodic Autoencoders for Learning Motion Phase Manifolds • 1:7

synthesizing more smooth and realistic movement transitions with
less parameter tuning, which is not easily the case when matching
Cartesian pose features (top row) that need to be handpicked for
specific joints (i.e. feet for locomotion) or require additional filtering.

5 EXPERIMENTS AND EVALUATION
In this section, we show our experimental results where we com-
pute phase manifolds using the Periodic Autoencoder and generate
motion using various motion capture datasets (see Table 1). We
first visualize the learned phase manifold and compare with those
learned using existing methods. We next present the results of real-
time motion synthesis with our neural network framework. Finally,
we provide a quantitative evaluation of our results and a system
evaluation using motion matching as the test-bed.

5.1 Learned Phase Manifolds
After computing the phase manifold for each dataset as described
in Section 3, we compute the Principle Components (PCs) of the
phase features to project them onto a 2D plane (see Fig. 6 bottom).
For comparison, we compute an embedding by replacing the phase
layers with fully connected layers, and similarly project them to
a 2D plane after computing their PCs (see Fig. 6 middle). Finally,
we also plot the PCs of the original joint velocities (see Fig. 6 top).
In these figures, all samples of the same motion clip are assigned
the same color, which means that neighbouring frames in the mo-
tion data should be closely connected in the embedding. It can be
observed that the phase manifold has a consistent structure simi-
lar to polar coordinates. The cycles represent the primary period
of the individual motions, where the timing is represented by the
angle around the center, and the amplitude as the velocity of the
motion. Furthermore, samples smoothly transition between cycles
of different amplitude or frequency, which indicate transition points
between movements.
We highlight shorter sequences of the 2D projections of biped

locomotion and dance motion in Fig. 7. This further clarifies the
segmentation of similar motion states. The embeddings by the fully
connected layers produce cycles that appear less structured while

Table 1. The motion capture dataset used to train our model. Each dataset
is used to train different Periodic Autoencoders and motion generators.

Dataset Frames Movements
Biped 222269 (61.7min) Walk, Jog, Run, Sprint, Strafing,

Skipping, Regular and Drastic
Turns

Quadruped 63268 (17.6min) Pace, Trot, Canter, Turns, Irreg-
ular Steps [Zhang et al. 2018]

Styles 726265 (201.7min) Locomotion in 20 Styles [Mason
et al. 2022]

Dance 33046 (9.2min) Multiple dance choreographies
pairedwith differentmusic clips
[Li et al. 2021]

Football 147174 (40.9min) Various locomotion and ball
dribbling maneuvers

Fig. 7. 2D PCA embedding of the learned phase manifold compared to
velocity and low-dimensional convolutional embeddings, highlighting the
time series of a single motion clip of biped locomotion (top) and a dance
choreography (bottom).

those by our approach produce cycles adjacent to one another. The
cycles by the original velocities produce distributions where the
samples are distributed at random locations in the 2D plane. This
suggests that character movements and transitions can be better
represented in phase space than in the original motion space or by
fully-connected embeddings, for which even simple movements like
regular human locomotion may exhibit difficult paths in the feature
space.

Finally, the results of visualizing the PCs of bipedwalking, stylized
multi-periodic walking and dancingmotion in 3D are shown in Fig. 8.
While there is only onemonotonic cycle for the bipedwalking, multi-
periodic cycles are visible for the stylized walk: the arms are moving
faster in this walking style whose period is captured in the vertical
waves. The dancing motion is composed of multiple subcycles with
different frequencies. This results in cycles of various orientations
overlapped with one another.

5.2 Motion Synthesis by Neural Netowrks
We present the animated results created using the neural networks
framework described in Section 4. The readers are referred to the
supplementary video for the details. Here we mainly compare our
results with those of PFNN [Holden et al. 2017], MANN [Zhang et al.
2018] and LMP [Starke et al. 2020].

Locomotion. Our system is able to produce a range of biped loco-
motion movements (see Fig. 9, top). Compared to PFNN or LMP, the
difference is most obvious when viewing the very sharp turns and
agile motions. The proposed framework enables more momentum
and gravity to be seen in the upper body as the extracted phase
features contain information that align the upper body motion as
well as the lower body. In particular, the phases for PFNN and LMP
are computed based on the foot contacts, which may cause the up-
per body motion to be blurred especially for drastic movements
when such variations are included in the data. Our system can also
produce smooth transitions from low-to-high frequency movements

ACM Trans. Graph., Vol. 41, No. 4, Article 1. Publication date: July 2022.

1:8 • Starke et al.

Fig. 8. 3D PCA embedding for periodic biped walking (top), stylized walking
with waving arms (middle), and complex dance motion (bottom).

with better quality (see Fig. 10, right) since the feature transitions in
the phase manifold are better structured (corresponds to transitions
from outer-to-inner cycles in Fig. 7).
Our system also works very well for synthesizing quadruped

locomotion modes in high quality (see Fig. 9, bottom). Compared
to MANN or LMP, the tail movements during the motion are more
active as those models do not consider the periodicity of the tail
(see Fig. 10, left). Especially during standing when no control input
is given, the entire body of the character tends to become stiff (also
see Section 5.3, Table 2) while the learned phase manifold keeps
the tail and body motion progressing. We observe that at least one
phase variable learns to be primarily responsible for the tail motion
with different periodicity from the phases of the rest of the body.

Stylistic Movements. We train our model with 20 stylized motions
using the motion data from Mason et al. [2022]. The movements
cover a diverse range of different stylized locomotion behaviors,
particularly those where the arms are moving with a different pe-
riodicity from the legs (see Fig. 11). Compared to LMP, the arm

Fig. 9. Diverse types of locomotion for human (sprint, drastic turns, side
jumps) and quadruped (pace, trot, canter) can be synthesized using the
learned phase manifold.

Fig. 10. Tail waving learned phases versus local phases. Smooth transition
from low-to-high frequency stepping patterns during slowing down motion.

movements are considerably sharper and body gravity is preserved
better as LMP computes the local phase only based on contacts.
Without the ability to align the variety of movements for which
contacts are rather sparse, the upper-body limbs tend to become
stiff (see Fig. 12, bottom). Our results perform similarly to Mason et
al. [2022], however, their method of computing local phases for each
limb or motion type is designed for their specific motion dataset.
Note that they compute the leg phases using the foot contacts with
the ground and PCA heuristic functions for the arms or during
contact-free feet motion such as hopping. This requires additional
labelling, whereas our method computes the phase purely using the
motion.

Dance Motion Synthesis. To let the character dance in response
to different music clips, we train neural network models where the
tonal and rhythmic music features (mel spectogram, mel frequency
cepstral coefficients, spectral flux, chroma, beats, zero-crossings),
similar to the setup in Valle-Pérez et al. [2021], are given as control
signals fromwhich the character motion and trajectory are predicted

Fig. 11. Diverse types of style movements synthesized by our method,
showing 6 out of 20 styles in total, including waving arms (top left), armed
(top middle), swimming arms (top right), gorilla (bottom left), drunk (bottom
middle) and one-foot hopping (bottom right).

ACM Trans. Graph., Vol. 41, No. 4, Article 1. Publication date: July 2022.

DeepPhase: Periodic Autoencoders for Learning Motion Phase Manifolds • 1:9

Fig. 12. The motions synthesized by networks with/without using the phase
features as inputs.

Fig. 13. A set of dance choreographies exhibiting different compositions of
limb movements that can be aligned by our method and generated from
music input features.

in an autoregressive manner. Our model produces vivid motions for
both the arms and the legs, in sync with the music (see Fig. 13). The
trained system generalizes to test music clips that are different from
the training music data: in this case, the style of dance whose music
features are closest to the test set appears to be selected and adapted
to the music and its beat. We also observed that when switching
randomly between music clips during the dance, the model selects
the right timing for the transition and generates appropriate body
movements that are outside the data. In contrast, the baselines fail to
accurately reconstruct the diverse choreographies in the dataset and
may lose the time alignment with the music, causing the motion to
become stiff. (see Fig. 12, top). When visually comparing our results
with those by MoGlow [Henter et al. 2020], Transflower [Valle-
Pérez et al. 2021] and AI Choreographer [Li et al. 2021], our system
produces more smooth and stable movements (see supplementary
video). Although the motion by Transflower appear creative thanks
to the random sampling in the latent space, the movements are noisy
and suffer from jerkiness, and the feet often slide over the ground
during the support phase.

Football Dribbling. We finally test our model with football drib-
bling where the ball behaves in a varying manner with respect to
the feet. The footballer also conducts various footstep movements
of different frequency, particularly during sharp turns while turning
with the ball. During runtime, the ball is controlled using physics
after separating from the feet, and thus the motion is unseen during
training. When the ball is within a small proximity range around

Fig. 14. Football dribbling examples that can be synthesized by our method.

the character root or feet, the physics-based ball velocity is interpo-
lated with the ball velocity prediction by the network. Despite such
tough conditions where the character has to move aligned with an
external object during fast-paced movements, the system predicts
the character motion accordingly to continue dribbling the ball in
a plausible manner (see Fig. 14). As with the previous results, the
system is provided with no contact information and still produces
realistic interactions between body and object.

5.3 Evaluation
In this section, we first further evaluate the results that make use
of the neural networks. We also evaluate the phase variables as
features by applying them for motion matching.

Evaluation of Motions by Neural Networks. Here we evaluate the
vividness of the motions and foot skating artifacts. For evaluating
the vividness, we compute the average joint rotations per second
(see Table 2). It is often the case that motions generated by neural
networks are blurry due to blending motions dissimilar motions at
wrong timings. Such artifacts can be reduced by using the phase
variables as features; it can be observed that the proposed approach
can synthesize motions with more movements per second compared
to the baselines.
We next evaluate the foot skating artifacts (see Table 3). First,

the maximum foot velocity during foot contact states is computed
for each set of motion (𝑣𝑚𝑎𝑥), and then the foot speed at each con-
tact state (𝑣) during inference is computed and divided by 𝑣𝑚𝑎𝑥 .
Finally, we evaluate the average 𝑣

𝑣𝑚𝑎𝑥
across all collected samples.

The baselines use foot contact labels for training but can still blend
movements with different poses, which produce foot skating arti-
facts during runtime. As our method aligns the motions, both in
terms of space and time, the amount of foot skating is reduced for
most datasets even when we are not providing the foot contact
labels as inputs.

Evaluation of the Phase Feature Metric. We now examine the met-
ric based on the phase features by applying it as a distance function
for motion matching. Motion matching matches the current pose
with the poses in the database to select the next motion clip using a
distance function. A KD tree structure of the motion data is precom-
puted based on the state vector and the distance function. During
runtime, the 𝑘-nearest neighbours that match the current pose and
the control signals are selected, and further filtered to select the best
next clip. A simple approach is to use a distance function based on
all the joint positions and velocities; this is memory intensive and
slow as the state vector is high dimensional. Therefore, developers

ACM Trans. Graph., Vol. 41, No. 4, Article 1. Publication date: July 2022.

1:10 • Starke et al.

Fig. 15. The average index of the following frame in the motion capture data when matched with features of the phase manifold, reduced pose and full pose
(left) and the average indices of the future frames in the motion capture data when matched with the three feature setups (right).

usually define a state vector using a subset of joints. For example,
for locomotion, distance as a combination of foot and spine posi-
tions/velocities is used, while for motions such as dancing, a distance
that also considers the hand positions/velocities is needed [Mach
and Zhuravlov 2021].
We compare the effect of using a state vector/distance function

based on the phase featureswith distance functions based on a subset
of joint positions/velocities and the full set. We first examine how
the next pose in the motion capture data will be indexed when given
the feature of the current pose data as the input (see Fig. 15, left),

Table 2. The average joint rotations per second for different classes of
motions. The proposed method produces more movements in all classes of
motions.

Motion Skill MANN LMP Ours
Biped Locomotion 43.6 49.8 51.2
Biped Drastic Turns 87.9 126.8 143.5
Quadruped Locomotion 159.7 173.2 195.7
Quadruped Tail (Locomotion) 9.4 10.9 15.8
Quadruped Tail (Idle) 0 0 14.2
Armed / Old / Zombie / High Knees 51.2 58.1 62.4
Arm Punch / Flap / Swim / Whirl 27.6 31.2 41.4
One / Two Foot Hopping 67.3 36.1 88.5
Ballet Dance 38.4 46.9 48.2
Hip Hop Dance 97.8 98.8 114.4
Expressive Dance 74.2 53.9 92.1
Football Dribbling 76.4 93.5 149.8

Table 3. The average amount of foot skating during ground contacts, cal-
culated as the average ratio of the foot speed with respect to the maximum
foot speed during contacts in the motion dataset.

Dataset MANN LMP Ours
Biped 0.686 0.573 0.476
Quadruped 0.596 0.514 0.522
Styles 0.411 0.351 0.279
Dance 0.605 0.684 0.443
Football 0.635 0.598 0.431

which ideally should be at first index. Despite the low dimensionality
of the phase feature, the next pose is always indexed close to the
current pose, while also effectively shrinking the required memory
cost for the feature database. The full state and reduced state vectors
cannot always index the next pose close to the current pose - which
also explains the need for further filtering of the motions to find the
next appropriate clip.

Next we examine how such an indexing extends to future frames.
We compute the indices of the actual future frames in the motion
capture data from the current state of the body. In this case, for the
phase feature, we first estimate the future phase state by extrapolat-
ing the current phase state using the frequency at the current state
and the delta time from the current to the future frame similar to
Eq. (9), but without changing its amplitude. For the reduced and
full raw state vectors, we use the position and velocity vectors of
the current frame for the query, but without extrapolating the ve-
locity to the future as this will produce worse results especially for
more distant future frames. Thus, the ability to extrapolate a current
frame into future can be considered a unique property of our phase
manifold compared to the original motion space. This functionality
to accurately predict the future state supports the robustness of our
method and can further be useful for planning the motion when
interacting with other characters, planning transitions or computing
IK offsets for guiding limb movements.
Finally, we visualize the 𝑘-nearest neighbour poses computed

by the phase features based on contact labels [Starke et al. 2020],
heuristic local phase [Mason et al. 2022] and our method (see Fig. 16
and the supplementary video). As the other methods only compute
the phase features based on the foot contact labels and the principal
components of the hand velocities, the similarity of the pose itself
is not considered when searching the nearest neighbours. As can be

Table 4. The alignment error for different phase extraction methods. The
error is calculated as the average distance between joints pairs of 10matched
poses over 10000 search queries over the style and dance dataset.

Phase Extraction Alignment Error
Contact-based [Starke et al. 2020] 0.146
PCA Heuristic [Mason et al. 2022] 0.074
Learned (Ours) 0.034

ACM Trans. Graph., Vol. 41, No. 4, Article 1. Publication date: July 2022.

DeepPhase: Periodic Autoencoders for Learning Motion Phase Manifolds • 1:11

Fig. 16. Alignment of multi-phasic dance movements using different local
phase methods based on contacts, heuristics and learning.

observed in Fig. 16 and Table 4, our approach can find poses in the
dataset where the leg configurations are more similar to the query
pose. In fact, our method does not use the pose information either,
but rather the long window of velocity information compressed by
our method is able to better match the pose. The larger variation
for other methods can cause more foot skating not only in motion
matching but also for neural networks, as the system will tend
to blend poses with similar state vectors (see Table 3). Note that
the nearest neighbors of the phase features are also more similar in
terms of of timing (see the supplementary video). Although raw joint
position/velocity with dynamic time warping [Kovar and Gleicher
2004] can align motions well, the dimensionality of the vectors are
much higher and costly to compute. Thus this is not suitable for
real-time motion matching or to be within the training loop of a
neural network-based system.

6 DISCUSSION
The learned phase feature introduced in this paper inherits vari-
ous characteristics of the phase structure introduced by Holden
et al. [2017] and further enhanced by Starke et al. [2020], which
includes unidirectionality and motion alignment. The unidirection-
ality is introduced through the incremental nature of the phase.
This characteristic reduces the chance the system matches previous
frames as neighbours of the current frame, which helps avoiding
artifacts where the motions may appear stiff (see Fig. 17). Indeed,
when visualizing the L2 distance between each frame in various
motions, the similarity of the poses are apparent only in the direc-
tion where time is increasing when using the phase feature, where
this is not the case for position/velocity feature (see Fig. 18). Also,

Fig. 17. Searching motions autoregressively into future by matching
pose/velocity features (bottom) versus phase features (top). The color indi-
cates the similarity of matched poses throughout the motion.

Fig. 18. Similarity map using L2 distance for each pair of motion frames
comparing our learned phase manifold (left column) and pose/velocity
features (right column), including a biped sprint (top), quadruped trot and
canter (middle) and disco dancing motion (bottom).

the proposed method allows the alignment of not only locomotion
or contact-intense interactions, but also complex full body motions
where the limbs move in an asynchronous manner or in irregular
patterns. This is an improvement over local motion phase [Starke
et al. 2020] which requires contacts for defining the phase, or Mason
et al. [2022] that defines the local phase based on the individual
movements (see Fig. 16).
The number of phase channels of the Periodic Autoencoder is a

hyperparameter whose optimal number can depend on the amount
of data used for training and the variation of motion types included
in the dataset. While a low number of channels will potentially
blend motions with different local timings incorrectly, increasing
the number of channels could potentially cause problems on the
application side. Although it is unlikely to be an issue for motion
matching, having a large number of inputs in the gating network for
motion synthesis will decrease the number of samples to be inter-
polated for each cluster segmented by the gating network; this can
result in fewer transitions between motions. Furthermore, although
there is no direct control about which phase becomes specialized for
which specific body region or motion type, the system is learning
the representative coordination of different parts of the body in
different phase channels. When different body parts are moving
in different phase cycles, such phase cycles can be successfully ex-
tracted as shown in Fig. 8. Similarly for the dog motion, a phase
parameter specialized for the tail can be successfully extracted (see
supplementary video).

Our phase feature and the positional encodings used with trans-
formers [Vaswani et al. 2017] have a common point in that both use

ACM Trans. Graph., Vol. 41, No. 4, Article 1. Publication date: July 2022.

1:12 • Starke et al.

multi-resolution sinusoidal functions. Whilst the positional encod-
ings of Vaswani et al. and others [Devlin et al. 2019] encode only
the position of words, our learned spatial-temporal embeddings
represent the whole motion by learning to combine position (in
time) and body pose (in space) information. Our phase feature is
thus much richer in terms of representation and can be applied
for tasks such as motion alignment and matching, while positional
encodings need to be combined with the semantic embeddings to
be applied for complex tasks. Beyond transforming the periodic
parameters into a phase manifold, a potential direct use of those
could be for motion stylization, where the parameters could act
as feature vectors alternative to using one-hot representations to
describe the motion style.

7 LIMITATIONS
Our dance motion synthesis system from music does not generalize
to arbitrary music; although it helps to find a good alignment of
the input music and the corresponding dance motion data, it alone
does not have the functionality to combine dance movements given
novel music such as in Transflower [Valle-Pérez et al. 2021]. Indeed,
it needs to be combined with suitable models that can learn the
context of the music as well as its mapping with the motion for a
better generalization to novel music.

While the learned phase manifold effectively clusters the motions
and shrinks the number of possible transitions from one frame into
the next, it does not resolve ambiguity about which motion skill
to generate. Providing user control or probabilistic techniques to
sample from a learned distribution is still required.

8 CONCLUSION AND FUTURE WORK
In this paper, we propose a Periodic Autoencoder that learns phase
features for aligning high-dimensional unstructured motion data.
The system produces a low-dimensional latent space called the phase
manifold. The system effectively learns motion features with differ-
ent amplitudes and frequencies that well represent the periodicity of
the body motion and learns their corresponding timing through the
learned phase parameters. We show that the learned features can
greatly improve the quality of motion synthesized by data-driven
frameworks such as motion matching and neural networks.

We trained the Periodic Autoencoder from scratch for each dataset
and usage. It could potentially be trained on a large heterogeneous
dataset to act as a pretrained model to compute motion alignemnts
through multiple phase variables for unseen character movments
Although our application is demonstrated for motion synthesis

for real-time character control, the Periodic Autoencoder framework
can potentially be applied to data of other modalities, such as videos,
sound or speech data.

ACKNOWLEDGMENTS
This research is partly supported by New Energy and Industrial
Technology Development Organization (NEDO) (ref:JPNP21004).
We further thank Yiwei Zhao and Fabio Zinno for the fruitful dis-
cussions on this research, as well as Matteo Loddo for skinning the
quadruped character model.

REFERENCES
Okan Arikan and David A Forsyth. 2002. Interactive motion generation from examples.

ACM Trans on Graph 21, 3 (2002), 483–490. https://doi.org/10.1145/566654.566606
Philippe Beaudoin, Pierre Poulin, and Michiel van de Panne. 2007. Adapting wavelet

compression to human motion capture clips. In Proceedings of Graphics Interface
2007. 313–318.

Kevin Bergamin, SimonClavet, Daniel Holden, and James Richard Forbes. 2019. DReCon:
data-driven responsive control of physics-based characters. ACM Transactions on
Graphics (TOG) 38, 6 (2019), 1–11.

Armin Bruderlin and Lance Williams. 1995. Motion signal processing. In Proceedings of
the 22nd annual conference on Computer graphics and interactive techniques. 97–104.

Kyungmin Cho, Chaelin Kim, Jungjin Park, Joonkyu Park, and Junyong Noh. 2021.
Motion recommendation for online character control. ACM Transactions on Graphics
(TOG) 40, 6 (2021), 1–16.

Simon Clavet. 2016. Motion matching and the road to next-gen animation. In Proc. of
GDC.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers). 4171–4186. https://doi.org/10.18653/v1/N19-1423

Milan R Dimitrijevic, Yuri Gerasimenko, and Michaela M Pinter. 1998. Evidence for
a spinal central pattern generator in humans. Annals of the New York Academy of
Sciences 860, 1 (1998), 360–376.

Levi Fussell, Kevin Bergamin, and Daniel Holden. 2021. SuperTrack: motion tracking
for physically simulated characters using supervised learning. ACM Transactions on
Graphics (TOG) 40, 6 (2021), 1–13.

Félix G Harvey, Mike Yurick, Derek Nowrouzezahrai, and Christopher Pal. 2020. Robust
motion in-betweening. ACM Transactions on Graphics (TOG) 39, 4 (2020), 60–1.

Rachel Heck and Michael Gleicher. 2007. Parametric motion graphs. In Proc. I3D.
129–136. https://doi.org/10.1145/1230100.1230123

Gustav Eje Henter, Simon Alexanderson, and Jonas Beskow. 2020. Moglow: Probabilistic
and controllable motion synthesis using normalising flows. ACM Transactions on
Graphics (TOG) 39, 6 (2020), 1–14.

Jonathan Ho and Stefano Ermon. 2016. Generative adversarial imitation learning.
Advances in neural information processing systems 29 (2016), 4565–4573.

Daniel Holden, Taku Komura, and Jun Saito. 2017. Phase-functioned neural networks
for character control. ACM Trans on Graph 36, 4 (2017), 42. https://doi.org/10.1145/
3072959.3073663

Daniel Holden, Jun Saito, and Taku Komura. 2016. A deep learning framework for
character motion synthesis and editing. ACM Trans on Graph 35, 4 (2016), 138.

Daniel Holden, Jun Saito, Taku Komura, and Thomas Joyce. 2015. Learning motion
manifolds with convolutional autoencoders. In SIGGRAPH Asia 2015 Technical Briefs.
ACM, 18.

Lucas Kovar and Michael Gleicher. 2004. Automated Extraction and Parameterization
of Motions in Large Data Sets. ACM Trans on Graph 23, 3 (2004), 559–568. https:
//doi.org/10.1145/1186562.1015760

Lucas Kovar, Michael Gleicher, and Frédéric Pighin. 2008. Motion graphs. In ACM
SIGGRAPH 2008 classes. 1–10.

Jehee Lee, Jinxiang Chai, Paul SA Reitsma, Jessica K Hodgins, and Nancy S Pollard.
2002. Interactive control of avatars animated with human motion data. ACM Trans
on Graph 21, 3 (2002), 491–500. https://doi.org/10.1145/566654.566607

Kyungho Lee, Seyoung Lee, and Jehee Lee. 2018. Interactive character animation by
learning multi-objective control. In SIGGRAPH Asia 2018 Technical Papers. ACM,
180.

Kyungho Lee, Sehee Min, Sunmin Lee, and Jehee Lee. 2021b. Learning Time-Critical
Responses for Interactive Character Control. ACM Trans. Graph. 40, 4, Article 147
(2021).

Seyoung Lee, Sunmin Lee, Yongwoo Lee, and Jehee Lee. 2021a. Learning a family of
motor skills from a single motion clip. ACM Trans. Graph. 40, 4, Article 93 (2021).

Yongjoon Lee, Kevin Wampler, Gilbert Bernstein, Jovan Popović, and Zoran Popović.
2010. Motion fields for interactive character locomotion. In ACM SIGGRAPH Asia
2010 papers. 1–8.

Sergey Levine, Jack M Wang, Alexis Haraux, Zoran Popović, and Vladlen Koltun. 2012.
Continuous character control with low-dimensional embeddings. ACM Transactions
on Graphics (TOG) 31, 4 (2012), 1–10.

Ruilong Li, Shan Yang, David A. Ross, and Angjoo Kanazawa. 2021. Learn to Dance
with AIST++: Music Conditioned 3D Dance Generation. arXiv:cs.CV/2101.08779

Hung Yu Ling, Fabio Zinno, George Cheng, and Michiel Van De Panne. 2020. Character
controllers using motion vaes. ACM Transactions on Graphics (TOG) 39, 4 (2020),
40–1.

Zicheng Liu, Steven J Gortler, and Michael F Cohen. 1994. Hierarchical spacetime
control. In Proceedings of the 21st annual conference on Computer graphics and
interactive techniques. 35–42.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled weight decay regularization. In
International Conference on Learning Representations.

ACM Trans. Graph., Vol. 41, No. 4, Article 1. Publication date: July 2022.

https://doi.org/10.1145/566654.566606
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1145/1230100.1230123
https://doi.org/10.1145/3072959.3073663
https://doi.org/10.1145/3072959.3073663
https://doi.org/10.1145/1186562.1015760
https://doi.org/10.1145/1186562.1015760
https://doi.org/10.1145/566654.566607
http://arxiv.org/abs/cs.CV/2101.08779

DeepPhase: Periodic Autoencoders for Learning Motion Phase Manifolds • 1:13

Ying-Sheng Luo, Jonathan Hans Soeseno, Trista Pei-Chun Chen, and Wei-Chao Chen.
2020. Carl: Controllable agent with reinforcement learning for quadruped locomo-
tion. ACM Transactions on Graphics (TOG) 39, 4 (2020), 38–1.

Michal Mach and Maksym Zhuravlov. 2021. Motion Matching in ’The Last of Us Part
II’. https://www.gdcvault.com/play/1027118/Motion-Matching-in-The-Last.

Ian Mason, Sebastian Starke, and Taku Komura. 2022. Real-Time Style Modelling of
Human Locomotion via Feature-Wise Transformations and Local Motion Phases.
arXiv preprint arXiv:2201.04439 (2022).

Josh Merel, Saran Tunyasuvunakool, Arun Ahuja, Yuval Tassa, Leonard Hasenclever,
Vu Pham, Tom Erez, Greg Wayne, and Nicolas Heess. 2020. Catch & Carry: reusable
neural controllers for vision-guidedwhole-body tasks. ACMTransactions on Graphics
(TOG) 39, 4 (2020), 39–1.

Jianyuan Min and Jinxiang Chai. 2012. Motion graphs++: a compact generative model
for semantic motion analysis and synthesis. ACM Transactions on Graphics (TOG)
31, 6 (2012), 153.

TomohikoMukai and Shigeru Kuriyama. 2005. Geostatistical motion interpolation. ACM
Trans on Graph 24, 3 (2005), 1062–1070. http://doi.acm.org/10.1145/1073204.1073313

Aaron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. 2017. Neural discrete
representation learning. arXiv preprint arXiv:1711.00937 (2017).

Soohwan Park, Hoseok Ryu, Seyoung Lee, Sunmin Lee, and Jehee Lee. 2019. Learn-
ing predict-and-simulate policies from unorganized human motion data. ACM
Transactions on Graphics (TOG) 38, 6 (2019), 1–11.

Xue Bin Peng, Pieter Abbeel, Sergey Levine, andMichiel van de Panne. 2018. Deepmimic:
Example-guided deep reinforcement learning of physics-based character skills. ACM
Transactions on Graphics (TOG) 37, 4 (2018), 1–14.

Xue Bin Peng, Glen Berseth, and Michiel van de Panne. 2016. Terrain-Adaptive Lo-
comotion Skills Using Deep Reinforcement Learning. ACM Trans on Graph 35, 4
(2016). https://doi.org/10.1145/2897824.2925881

Xue Bin Peng, Glen Berseth, KangKang Yin, and Michiel Van De Panne. 2017. Deeploco:
Dynamic locomotion skills using hierarchical deep reinforcement learning. ACM
Transactions on Graphics (TOG) 36, 4 (2017), 1–13.

Xue Bin Peng, Ze Ma, Pieter Abbeel, Sergey Levine, and Angjoo Kanazawa. 2021. AMP:
Adversarial Motion Priors for Stylized Physics-Based Character Control. arXiv
preprint arXiv:2104.02180 (2021).

Charles Rose, Michael F Cohen, and Bobby Bodenheimer. 1998. Verbs and adverbs:
Multidimensional motion interpolation. IEEE Computer Graphics and Applications
18, 5 (1998), 32–40.

Charles F Rose III, Peter-Pike J Sloan, and Michael F Cohen. 2001. Artist-Directed
Inverse-Kinematics Using Radial Basis Function Interpolation. Computer Graphics
Forum 20, 3 (2001), 239–250. https://doi.org/10.1111/1467-8659.00516

Alla Safonova and Jessica K Hodgins. 2007. Construction and optimal search of inter-
polated motion graphs. ACM Trans on Graph 26, 3 (2007). https://doi.org/10.1145/
1276377.1276510

Hyun Joon Shin and Hyun Seok Oh. 2006. Fat graphs: constructing an interactive charac-
ter with continuous controls. In Proceedings of the 2006 ACM SIGGRAPH/Eurographics
symposium on Computer animation. Eurographics Association, 291–298.

Sebastian Starke, He Zhang, Taku Komura, and Jun Saito. 2019. Neural state machine
for character-scene interactions. ACM Trans on Graph 38, 6 (2019), 209. https:
//doi.org/10.1145/3355089.3356505

Sebastian Starke, Yiwei Zhao, Taku Komura, and Kazi Zaman. 2020. Local motion phases
for learning multi-contact character movements. ACM Transactions on Graphics
(TOG) 39, 4 (2020), 54–1.

Munetoshi Unuma, Ken Anjyo, and Ryozo Takeuchi. 1995. Fourier principles for
emotion-based human figure animation. In Proceedings of the 22nd annual conference
on Computer graphics and interactive techniques. 91–96.

Guillermo Valle-Pérez, Gustav Eje Henter, Jonas Beskow, André Holzapfel, Pierre-Yves
Oudeyer, and Simon Alexanderson. 2021. Transflower: probabilistic autoregressive
dance generation with multimodal attention. ACM Transactions on Graphics (TOG)
40, 6 (2021), 1–14.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. In
Advances in neural information processing systems. 5998–6008.

Douglas J Wiley and James K Hahn. 1997. Interpolation synthesis of articulated figure
motion. IEEE Computer Graphics and Applications 17, 6 (1997), 39–45.

Jungdam Won, Deepak Gopinath, and Jessica Hodgins. 2020. A scalable approach to
control diverse behaviors for physically simulated characters. ACM Transactions on
Graphics (TOG) 39, 4 (2020), 33–1.

M Ersin Yumer and Niloy J Mitra. 2016. Spectral style transfer for human motion
between independent actions. ACM Transactions on Graphics (TOG) 35, 4 (2016),
1–8.

Rafael Yuste, Jason N MacLean, Jeffrey Smith, and Anders Lansner. 2005. The cortex as
a central pattern generator. Nature Reviews Neuroscience 6, 6 (2005), 477–483.

He Zhang, Sebastian Starke, Taku Komura, and Jun Saito. 2018. Mode-adaptive neural
networks for quadruped motion control. ACM Trans on Graph 37, 4 (2018). https:
//doi.org/10.1145/3197517.3201366

ACM Trans. Graph., Vol. 41, No. 4, Article 1. Publication date: July 2022.

https://www.gdcvault.com/play/1027118/Motion-Matching-in-The-Last
http://doi.acm.org/10.1145/1073204.1073313
https://doi.org/10.1145/2897824.2925881
https://doi.org/10.1111/1467-8659.00516
https://doi.org/10.1145/1276377.1276510
https://doi.org/10.1145/1276377.1276510
https://doi.org/10.1145/3355089.3356505
https://doi.org/10.1145/3355089.3356505
https://doi.org/10.1145/3197517.3201366
https://doi.org/10.1145/3197517.3201366

	Abstract
	1 Introduction
	2 Related Work
	3 Periodic Autoencoder
	3.1 Network Structure
	3.2 Phase Manifold
	3.3 Network Training

	4 Motion Controllers
	4.1 Neural Motion Controller
	4.2 Motion Matching

	5 Experiments and Evaluation
	5.1 Learned Phase Manifolds
	5.2 Motion Synthesis by Neural Netowrks
	5.3 Evaluation

	6 Discussion
	7 Limitations
	8 Conclusion and Future Work
	Acknowledgments
	References

