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Figure 1: Modelling large numbers of locomotion styles.

ABSTRACT

Controlling the manner in which a character moves in a real-time
animation system is a challenging task with useful applications.
Existing style transfer systems require access to a reference content
motion clip, however, in real-time systems the future motion con-
tent is unknown and liable to change with user input. In this work
we present a style modelling system that uses an animation synthe-
sis network to model motion content based on local motion phases.
An additional style modulation network uses feature-wise trans-
formations to modulate style in real-time. To evaluate our method,
we create and release a new style modelling dataset, 100style, con-
taining over 4 million frames of stylised locomotion data in 100
different styles that present a number of challenges for existing sys-
tems. To model these styles, we extend the local phase calculation
with a contact-free formulation. In comparison to other methods
for real-time style modelling, we show our system is more robust
and efficient in its style representation while improving motion
quality.

CCS CONCEPTS

•Computingmethodologies→Neural networks;Animation;
Motion capture.

KEYWORDS

neural networks, animation, style transfer, deep learning

Preprint, January 2022,
Public Dataset: https://www.ianxmason.com/100style/
Dataset Video: https://www.youtube.com/watch?v=ZPj_7Ewe3eU
Supplementary Results Video: https://www.youtube.com/watch?v=mnlnG8d5PM8

1 INTRODUCTION

Modelling the different ways in which people can move has many
applications in computer graphics such as changing a video game
character’s gait after being injured, or conveying character person-
ality through different walking styles in animated movies. Recently,
several works for data driven style transfer have achieved high
quality results by learning to extract style information from motion
capture data and using this to alter the movements of humanoid
characters [3, 21, 48, 56, 58]. Such works provide offline style trans-
fer that explicitly maps the style of a given motion clip onto the
content of a different clip (walking/running, direction, trajectory
etc.). These methods often make use of explicit timing adjustments
or foot contact matching between content and output stylised clips
and cannot easily be applied for real-time style modelling in systems
where the future timing and contacts are unknown and may change
rapidly as user input changes.

Modern data driven animation synthesis systems [23, 35, 50, 51,
59] do not need to make such timing adjustments, instead using
neural networks to model animation frames autoregressively. These
methods automatically capture how timing, stepping and bone po-
sitions change conditioned on past frames and user input. However,
most of these systems do not allow for multiple modalities of move-
ment and require retraining to model new styles or new characters.
Those works that do model style explicitly [23] make use of meth-
ods which cannot easily extend to new styles and do not provide
optimal quality (e.g. one-hot labelling, see Section 5).

Style modelling sits between style transfer and animation syn-
thesis. The aim of style modelling is to model motion conditioned
on user input, as in animation synthesis, but to additionally allow
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for the changing of style on the fly [22, 23, 38]. Unlike style trans-
fer, style modelling systems work online with arbitrary lengths of
content determined by the user input. Unlike most animation syn-
thesis systems, style modelling systems are explicitly designed for
modelling large numbers of motion styles and require an element
of animation editability not currently present in these fully-neural
systems. A good style modelling system should be able to: well
model stylised locomotion in real-time conditioned on user input;
model an arbitrary number of styles; allow for new styles to be
added easily (via generalisation or low-cost fine-tuning), and inter-
polate/transition well between styles.

In this paper, we propose a novel, real-time approach for style
modelling.We do not require paired or aligned data, insteadmotions
are stylised on a per-frame basis by conditioning on learned style
representations. We design a framework consisting of an animation
synthesis network, based on a local phase network (LPN [51]), aug-
mented with a style modulation network which uses feature-wise
linear modulation (FiLM [11, 43]) to transform the hidden layers
of the animation synthesis network. This framework allows us to
learn compact representations for many different styles while main-
taining the interactive control of a real-time system. In order to
utilise the LPN with stylised locomotion, which does not contain
the contact information required to create local phases [51], we
additionally design a contact-free local phase function.

To evaluate the strengths and limitations of our approach, we
create and release the 100style dataset containing 100 different
performative styles of locomotion and over 4 million frames of
motion capture data. Combining this dataset with our style mod-
elling framework allows us to model a wider variety of styles than
previously shown in the literature, to synthesize different modes of
locomotion (walking forwards and backwards, sidestepping etc.),
and to create continuous transitions between styles. The 100style
dataset also helps us to analyse areas of limitation for existing works
and to improve over systems that have been limited by available
3𝐷 stylised data.

The main contributions provided by this work are to:
• Create an improved style modelling system, using a novel
combination of animation synthesis and style modulation.

• Release the 100style dataset with ∼4 million mocap frames.
• Extend the local phase formulation of [51] to the contact-free
setting, increasing the applicability of the LPN.

• Demonstrate modelling of a larger number of styles than
previously shown by using a low cost style representation.

2 RELATEDWORK

Following the introduction, we review related work first on anima-
tion synthesis and then on style transfer and modelling.

2.1 Data-Driven Motion Modelling

Many classic machine learning techniques have been applied for
modelling human motion from data including, blending radial basis
functions [46], Gaussian processes [29, 39] and PCA [47]. More
recently, autoregressive neural network methods have been de-
veloped to predict future motion frames from given input frames
[7, 15, 34, 37]. Some authors have also used reinforcement learning
to model motion in physics-based systems [16, 41, 42, 57], although
animation quality still tails recent kinematic approaches.

More relevant to this work is locomotion modelling for control-
lable animation synthesis [20, 24, 35]. One successful method is
the Phase-Functioned Neural Network [23] which alters neural
network weights dependent on a global motion phase. This creates
implicit data alignment which allows for the generation of high
quality animation. This has also been extended to blending sets of
expert weights to model quadruped motion and character interac-
tions with a scene [50, 59]. Recently, Starke et al. [51] have proposed
local motion phases to better model asynchronous limb movements;
our method builds on top of this system as many motion styles lack
a coherent global phase. While successful for specific tasks, these
methods do not learn general motion features so lack the ability to
extend to unseen movements without retraining the whole system.

2.2 Style Transfer and Modelling

Stylisation techniques have a long history in computer vision and
graphics with applications to different mediums. For example, since
the development of a neural approach by Gatys et al. [17], many
methods have been designed that apply transformations to hid-
den units of convolutional networks to stylise images [12, 27, 28].
Style transfer is also closely related to the wider task of domain
adaptation [4, 13, 14, 25, 45, 52].

For animation data, whilst some methods have used hand de-
signed approaches to create a correspondence between content and
style [26, 58], most modern methods have focused on learning from
data [9, 10, 21, 40, 48, 53, 55, 56]. These style transfer methods how-
ever, require the motion content to be specified upfront, usually via
a clip of motion capture data, and thus are unsuitable for interactive
applications with high level user control.

For controllable systems, Holden et al. [23] use a one-hot style
representation to learn a small number of motion styles. However,
this requires the total number of styles to be known before training
and, with large number of styles, many of the parameters are used
simply for multiplication with the label. Learned motion matching
[22] is able to efficiently model stylised motion but learns no ex-
plicit style representation, rather using a general feature matching
approach that increases in cost with the dataset size. Most similar
to our work, Mason et al. [38] showed that style could be modelled
in real-time interactive systems by altering the hidden features
of neural network layers using residual adapters [44]. They did
not however, try to learn a general style parameterisation function.
Aberman et al. [3] use a similar approach, transforming hidden units
to transfer style onto given content clips from 2𝐷 or 3𝐷 data, how-
ever, they did not experiment with real-time controllable systems.

3 STYLISED LOCOMOTION DATA

We now describe the data created for this work. We begin by pre-
senting our new, large dataset of 100 locomotion styles and then
discuss the specifics of processing this dataset for use in our models.
This dataset is released alongside this paper.

3.1 The 100STYLE Dataset

Much of the recent work in data-driven style transfer has used
relatively small datasets. The lack of availability of large datasets has
led to the development of augmentation techniques [33], methods
that work with small amounts of data [38], methods that try and
leverage 2D data [3] and domain specific solutions [58]. Those
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Figure 2: Six of the styles from the 100style dataset. From left to right: Star - Backwards Walk; Drunk - Forwards Walk; Drag
Right Leg - Forwards Walk; Roadrunner - Forwards Run; Kick - Backwards Walk, and Wild Arms - Sidestep Run. The Drunk
style is stochastic, Drag Right Leg is asymmetric andWild Arms has joints moving with different phase cycles.

Table 1: A summary of the quantity of different gaits cap-

tured in the 100style dataset

Motion Gait Frames Time(m) Ratio(%)

Backwards Run 434,329 120 10.7
Backwards Walk 768,574 213 19.0
Forwards Run 414,911 115 10.2
Forwards Walk 777,640 216 19.2
Sidestep Run 250,980 70 6.2
Sidestep Walk 541,041 150 13.3
Idling 81,685 23 2.0
Transitions 786,818 218 19.4

Total 4,055,978 1125 100.0

methods that are purely data-driven are often only able to evaluate
on a small number of globally cyclic styles [21, 48]. Our dataset
is designed for modern data hungry techniques and contains 100
styles of locomotion each with a large number of frames of motion
capture data. Whilst there exists datasets which contain a large
number of frames for each style they tend to have a limited number
of styles [30, 56]. Datasets with a large variety of motions tend to
have relatively few frames of data per style [18]. Our dataset can
combine the benefits of both approaches.

The locomotion styles in our dataset are designed to cover a
range of movements that may prove challenging to model with a
single system. Whilst some styles are variations on a neutral walk
we also capture styles that are stochastic, asymmetric, and do not
have a clear global phase. We leave discussion of what constitutes a
style to Section 6, Figure 2 shows some styles captured in 100style.

The data is captured at 60fps in a 4.5m x 4.5m capture area using
a single actor of height 182cm and Xsens motion capture technology.
The skeleton contains 28 joints, including full-body position and
rotation data for each joint, but excluding finger transformations.
Each style covers idling, walking and running movements and is
captured according to a pre-prepared script, see Table 1 for the
breakdown of the number of frames per gait type. Full information
including a list of style descriptions, frames per style, and the script
for motion capture can be found in the supplementary material.

3.2 Data Processing

In order to use the 100style dataset we first remove the T-poses
and any non-stylised locomotion from the motion capture before
mirroring symmetric styles to increase the data quantity and ex-
tracting a number of features. We create three datapoint types:
input frames, output frames that we aim to predict, and clips of
stylised locomotion from which we aim to learn the style.

The input frame, x ∈ R348, consists of: 2 × 12, 𝑥 and 𝑧 trajectory
positions, representing the projected root position of the character
every 10 frames for 1 second in the future and past; similarly 2 ×
12 𝑥 and 𝑧 trajectory facing directions; a 75 dimensional vector
containing 𝑥 , 𝑦, 𝑧 positions for each of the 25 joints in our skeleton
(excluding the toes and top of head joint in the original motion data,
seen in Figure 1); another 75 dimensional vector containing 3𝐷
velocities for each of the joints, and 150 dimensions for quaternion
forwards and upwards vectors for the rotations (as in [59]). All
features are extracted in the character’s local coordinate frame to
provide invariance to global location. We additionally extract an 8-
dimensional local phase representation as explained in Section 4.1.

The output frame, z ∈ R342, consists of the, 2 × 6, 𝑥 and 𝑧 trajec-
tory positions and directions for one second in the future, along
with the same 300 dimensions for joint positions, velocities and
rotations as the input frame, with all values taken relative to the
character’s position in the input frame. In this way we can model
the character’s global root offset between frames. We also include
an approximate foot contact label (further described in Section 4.1),
with the remaining 16 dimensions for the local phases and local
phase updates required to run the LPN autoregressively.

The input clip, y ∈ R240×300, is a 240 frame sequence containing
the relative joint positions, velocities and rotations for each frame.
We do not include the trajectory or global offset as we don’t wish
to model the specific (global) motion in the clip.

4 STYLE MODELLING METHODOLOGY

In this section we describe a system for style modelling. Our system
contains an animation synthesis network that predicts the next
frame of motion from a given input frame, and a style modulation
network that extracts style information from clips of motion data
and uses this to modulate the hidden layers of the animation synthe-
sis network. A summary of our architecture is shown in Figure 3.
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Figure 3: System Overview. Animation is generated with an animation synthesis network (peach) that uses local

phases along with FiLM parameters from a style modulation network (green). LN is layer normalisation [5].

4.1 Animation Synthesis Network

We use a state of the art network based on a gated experts approach
designed to capture local movements in locomotion [50, 51, 59].
This network consists of two parts, firstly a gating network, Ω, that
takes as input some local signal and outputs blending coefficients
{𝛼𝑖 }𝐾𝑖=1. These coefficients are used to linearly blend 𝐾 sets of ex-
pert weights {W𝑖 }𝐾𝑖=1, with each set of expert weights themselves
representing one possible configuration of neural network weights.
This forms the parameters for the second network, the motion syn-
thesis network Φ, as W = ∑

𝑖 𝛼𝑖W𝑖 . We denote the parameters of
the 𝑙𝑡ℎ layer of the motion synthesis network as W(𝑙 ).

4.1.1 A Hybrid Approach to Local Phases. When defining phase
cycles for locomotion it is common to use a global phase defined by
the foot contacts (one phase cycle is one right foot contact and one
left foot contact) [23]. Since many stylised motions do not contain
a global phase, that is they are not globally cyclic, with different
joints moving with different timings and speeds, we choose to use
a local phase approach similar to Starke et al. [51]. In this setup
the gating network blends the expert weights based on the phase
cycles of individually specified joints. However, in Starke et al. [51]
the local phases are defined based on the contacts of the hands and
feet within the environment, for stylised locomotion we do not
always have such contact information, so it is necessary to design
a contact-free local phase.

To calculate local phases we fit a sinusoidal curve to some source
function, 𝐺(𝑡 ), as in Starke et al. [51, Section 5.2]. As this fitting
process allows us to extract phase values from many possible func-
tions, the question of local phase extraction is really a question of
source function design. We use two different source functions, one
when contact information is available and another when it is not.

4.1.2 Contact-Based Local Phases. To create the contact-based
source function we automatically extract approximate foot con-
tact labels by thresholding distance and velocity for the foot bones
in each frame. If both the ball centred on the bone with radius
𝑑𝑚𝑎𝑥 intersects the floor plane and the velocity magnitude of the
bone is less than 𝑣𝑚𝑎𝑥 we label the frame with a contact (1) and
otherwise with no contact (0). We use default values of 𝑑𝑚𝑎𝑥 = 0.01
and 𝑣𝑚𝑎𝑥 = 0.15 which can be altered for a specific motion if the
contact detection is overly or insufficiently sensitive. This creates a
step function which is 1 when a contact is present and 0 otherwise.
4.1.3 Contact-Free Local Phases. In the contact-free setting we
divide the data into the different gaits shown in Table 1. For a given
bone, for each style and gait, we then calculate the three principal
components of its position in the local coordinate frame. To extract
a good local phase we are aiming to capture some cyclic pattern
formed by the bone’s motion, in particular we do not care about the
average position of the bone in the character’s coordinate frame, so
we centre the data using the mean position for that style and gait.
We do not standardise by the variance as the variance in position
is what we want the principal components to capture.

In order to create the contact-free source function we project
the position of the bone onto the first principal component. This
gives us a one-dimensional function which is large in absolute value
when the bone is far away from its mean position (in the direction
of the first principal component), in particular this creates an ap-
proximately sinusoidal function for motions that are locally cyclic.
A final subtlety is that we additionally require that the principal
components are directed. To see why, imagine we have two bones
moving in a cyclic pattern either in sync (e.g. arms swinging back
and forth together) or out of sync by half a cycle (e.g. left arm swings
forward as right arm swings back). If the principal components
are undirected it may be impossible to tell the difference between
these two situations from the source function alone. To direct the
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principal component, we simply check if it has a positive value
along the character’s forward facing axis and flip the component if
it does not.
4.1.4 Processing and Calculating. To get the final source functions
we additionally postprocess the functions described above. Follow-
ing Starke et al. [51], we normalise within a one second window
and smoothe with a Butterworth filter. For the contact-based source
function this smoothes out the steps, and for the contact-free func-
tion reduces any noise created by small variations in movements.

After applying the fitting process we create a function of the form
𝑎𝑖 ·sin(𝑓𝑖 ·𝑡−𝑠𝑖 )+𝑏𝑖 , where 𝑖 is the frame index, 𝑡 the timestamp input
to source function𝐺(𝑡 ), and {𝑎𝑖 , 𝑓𝑖 , 𝑠𝑖 , 𝑏𝑖 } parameters optimised by
the fitting process. From this we can extract a phase value for each
frame, 𝜙𝑖 = (𝑓𝑖 · 𝑡 − 𝑠𝑖 ) mod 2𝜋 . As we wish to take into account
motions with limited bone movement, that is there is no clear phase
cycle, we additionally scale the phase by the bone velocity, | |v𝑤 | |,
taken over a one second window,𝑤 . Combining this with the 2𝐷
representation used by Starke et al. [51], for a source function for
bone 𝑏 we can extract a 2𝐷 phase feature,

p(𝑏)
𝑖

= | |v𝑤 | | · 𝑎𝑖 ·
(
sin𝜙𝑖
cos𝜙𝑖

)
. (1)

We calculate local phases in this manner for the end effector
bones (hands and feet), using contacts when they are available.
The results of this process are visualised in Figure 4 which shows
frames from three different styles. Planes perpendicular to the first
principal component are shown for the bones using the contact-free
method with the directions shown with purple arrows. Also shown
are corresponding source functions (white curves) and extracted
phases (blue lines, transparency representing phase magnitude)
alongside foot contact detections (green bars).

4.2 Style Modulation Network

By using the stylised motion capture clips as conditioning input
we can learn a function to parameterise locomotion style. Our style
modulation network uses a FiLM generator [43], Ψ, that learns to
parameterise style as FiLM parameters which modulate the hidden
layers of the motion synthesis network with an affine transforma-
tion. We additionally apply layer normalisation [5] before the FiLM
parameters, creating a form of conditional normalisation [12]. For
a single input at frame 𝑗 , x𝑗 , we can describe our system mathemat-
ically as follows. The FiLM generator outputs FiLM parameters for
each hidden layer of the motion synthesis network Φ,

Ψ(y) =
{
𝜸 (1), 𝜷 (1),𝜸 (2), 𝜷 (2)

}
, (2)

where𝜸 (𝑖) and 𝜷 (𝑖) are the FiLM parameter vectors for layer 𝑖 . These
parameters element-wise scale and shift the hidden units of Φ,

h(𝑖)
𝑗

= 𝐸𝐿𝑈 ©«𝜸 (𝑖) ◦

𝑭 (𝑖)
𝑗

− 𝝁 𝑗

𝝈 𝑗

 + 𝜷 (𝑖)ª®¬ , (3)

where F(𝑖)
𝑗

is the output features from layer 𝑖 of Φ and h(𝑖)
𝑗

is the
input to layer 𝑖 + 1, for input x𝑗 . 𝐸𝐿𝑈 is the exponential liner unit
[8], ◦ the element-wise product and 𝝁 𝑗 ,𝝈 𝑗 the layer normalisation
statistics found by calculating the mean and standard deviation
over the features for training example x𝑗 . Note that 𝑖 ∈ {1, 2},
in particular we only apply the conditional normalisation to the
hidden layers. The dashed red box in Figure 3 represents calculating

Figure 4: Local Phase Labelling. Top to bottom the styles

are: Pendulum Hands (local phases are well captured, both

contact-free and contact-based);Hands In Pockets (lowphase

magnitude in the hands due to limited movement), and Left
Hopping (using the contact-free method for the right foot).

The yellow line marks the frame shown in the images. The

source functions top to bottom are for the right hand, left

hand, right foot and left foot.

the FiLM parameters as in Equation 2 and the green boxes between
layers of the motion synthesis network capture Equation 3.

4.3 Combining Animation Synthesis and Style

We combine animation synthesis and style modulation to predict
an output frame z𝑠

𝑗
from input x𝑠

𝑗
for style 𝑠 as:

ẑ𝑠𝑗 = Φ
(
x𝑠𝑗 ;Ω(p(1)

𝑗
, p(2)
𝑗
, p(3)
𝑗
, p(4)
𝑗
),Ψ(ys)

)
, (4)

where ẑ𝑠
𝑗
is the prediction, Φ the motion synthesis network whose

parameters are experts gated by Ω and whose hidden representa-
tions are modulated with Ψ. p(𝑖)

𝑗
are the end effector phase features

for frame 𝑗 (Equation 1) and ys a stylised motion clip for style 𝑠 .
The final parameters for Φ form three feed-forward layers with

both hidden layers being of dimension 512. The gating network is
also three feed-forward layers with both hidden layers of size 32
and 8 output units, for the 8 experts we blend. Our FiLM generator,
Ψ, consists of two 1-dimensional convolutional layers containing
256 filters of size 25 that convolve over the temporal dimension
each followed by max pooling, downsampling by a factor of 2 each
time. We then apply two fully connected layers with 2048 hidden
units and output units. The output units correspond to the four
512-dimensional vectors from Equation 2.

To train the model we select 95 styles from the 100style dataset,
keeping the remaining styles for testing fine-tuning performance
on new styles (Section 5.3). The system is trained end to end using
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mean squared error across all predicted features in ẑ𝑗 and regu-
larised with a dropout rate of 0.3 everywhere [49]. We also find
a bone length loss useful to help reduce bone stretching artifacts.
This creates our objective function L = L𝑚𝑠𝑒 + L𝑏𝑙𝑙 where:

(5a)L𝑚𝑠𝑒 =
𝑆∑︁
𝑠=1

1
𝑁𝑠

𝑁𝑠∑︁
𝑗=1

(z𝑠𝑗 − ẑ𝑠𝑗 )
2

(5b)𝑙𝑏𝑙𝑙 (z, ẑ) =
1
𝐵

𝐵∑︁
𝑏=1

���| |𝑧𝑏𝑝 − 𝑧𝑏 | |2 − ||𝑧𝑏𝑝 − 𝑧𝑏 | |2
���

(5c)L𝑏𝑙𝑙 =
𝑆∑︁
𝑠=1

1
𝑁𝑠

𝑁𝑠∑︁
𝑗=1

𝑙𝑏𝑙𝑙 (z𝑠𝑗 , ẑ
𝑠
𝑗 )

where z𝑠
𝑗
is the ground truth output for frame 𝑗 in style 𝑠 , ẑ𝑠

𝑗
is the

corresponding network prediction, 𝑆 is the total number of training
styles, 𝑁𝑠 is the number of training frames available for style 𝑠 , 𝐵
is the number of bones in the skeleton, 𝑧𝑏 is the 3𝐷 position vector
for the child joint of a bone for ground truth z, 𝑧𝑏𝑝 is the parent
joint position vector, and 𝑧𝑏 & 𝑧𝑏𝑝 are the corresponding vectors
in the predicted ẑ. We use minibatch training and, to ensure bal-
anced training, each minibatch contains only one style and we cycle
through all the styles in a fixed order, so every set of 𝑆 minibatches
contains all of the training styles. As styles may have different num-
bers of training frames we define one epoch as one pass through
the shortest dataset and train for 90 epochs using Adam [32] with
a learning rate of 1 × 10−4 on a single Nvidia GeForce GTX 1080 Ti.

4.4 Creating the Real-Time Demo

We create a real-time demo which allows a user to control a charac-
ter with keyboard input. We follow the method of Zhang et al. [59]
to create a trajectory from user input which is blended with the
network’s predicted future trajectory. In order to reduce foot slid-
ing artifacts we use the predicted foot contact label for the output
frame ẑ to post-process our animation with foot contact inverse
kinematics. We skin our character with the Mixamo [1] Y bot skin.
We additionally find that when interpolating between styles the pre-
dicted rotations can sometimes be inaccurate causing the character
skin to become deformed. This is likely because linear interpolation
with our rotation representation does not always correspond to the
correct rotation interpolation and learning this non-linear inter-
polation with linear FiLM interpolation is difficult. To account for
this we apply inverse kinematics along each arm to map the bones
to the predicted positions which ensures the rotations reasonably
match these positions.

To increase speed and reduce storage costs at runtime we can
pre-calculate and save the FiLM parameters for each style offline,
this allows us to save a single vector (see Section 5.2) either as
an average of all FiLM parameters or from a single style clip. To
interpolate between styles we allow the user to select three arbitrary
training styles and blend the FiLM parameters according to the
barycentric coordinates at a triangle location selected by the user.
These interpolations can be manipulated online.

5 EVALUATION

Equippedwith our new dataset, the variety of styles available allows
us to: highlight failure cases with other style modelling approaches

that we are able to resolve; analyse our methodology and, in Sec-
tion 6, motivate future work in style modelling.

Our main comparisons from the literature are PFNN One-hot [23]
and PFNN Resad [38], which use the PFNN for animation synthesis
andmodulate style using a one-hot vector and residual adapters [44]
respectively. We also compare animation synthesis backbones, util-
ising FiLM style modulation with the PFNN (PFNN FiLM), MANN
(MANN FiLM) [59] and LPN (LPN FiLM). The latter is our system,
outlined in Section 4 . Finally, we combine the different style mod-
ulation approaches with our LPN (LPN One-hot & LPN Resad).

5.1 Reducing Failure Cases

Initially we evaluate the different methods qualitatively, highlight-
ing different ways in which methods can struggle. These results are
additionally shown, and best viewed, in the supplementary video.

Figure 5: No Global Phase. Style: Pendulum Hands. Left to
Right: Data, PFNN FiLM, LPN FiLM. For the PFNN the hands

do not swing together correctly.

5.1.1 Motions Without a Global Phase. As in [51] we find that the
introduction of a local phase is extremely beneficial for motions
which have no clear single global phase variable. For many styles,
the models which use the PFNN for animation synthesis struggle to
capture the movement of all body parts correctly. Since the PFNN’s
global phase is extracted from foot contacts this often manifests as
the hands and arms of the character becoming ‘stuck’ or perform-
ing some average pose as shown in Figure 5. The challenges with
modelling styles without coherent global phases emphasise the im-
portance of using a more flexible animation synthesis architecture.

Figure 6: Contact-Free Modelling. Style: Left Hop. Left: Data.
Right: LPN FiLM.

Contact-Free Modelling. In Section 4.1 we formulated a method
to create contact-free local phases, this easily allows for styles that
have varying contacts with the environment. Figure 6 shows a style
where only a single foot makes contact with the ground.
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Figure 7: Capacity Challenges. Style: Arms Above Head. Left
to Right: Data, LPN One-hot, LPN Resad, LPN Film. The cir-

cled clavicle bones are poorly modelled with lower capacity.

5.1.2 Dealing With Large Numbers of Styles. When modelling all
styles from the 100style dataset we find that the lower capacity of
one-hot and residual adapter modulation manifests in animation
artifacts (Figure 7). In particular, as implemented in the original
works, both the one-hot and residual adaptermethods can be seen as
adding a style-dependent shift to a single hidden layer of the synthe-
sis network, whereas FiLM both scales and shifts in all hidden layers.
We note also that in the one-hot case this problem can additionally
cause styles to be modelled incorrectly (see supplementary video).

Figure 8: Interpolation. Style: Bent Forward to Lean Back.
Left: LPN One-hot. Right: LPN FiLM. The one-hot method

does not smoothly blend between styles.

Interpolation Difficulties. We additionally find that when interpo-
lating between styles the one-hot approach fails to learn a smoothly
interpolatable representation. Rather, as we move between two
styles, this method tends to maintain the first style until interpo-
lation is complete. On the other hand, FiLM learns a continuous
style space to give a smooth interpolation as shown in Figure 8.
This preferable interpolation behaviour alongside the artifacts high-
lighted above evidence our preference for FiLM style modulation.

Figure 9: No Phase Features. Style: Swimming. Left to Right:

Data, MANN FiLM, LPN FiLM. Note the arms get stuck in

front of the character when using the MANN.

5.1.3 No Explicit Phase Features. Finally, we consider the MANN
which uses end effector velocities as gating input. We find this
method to be competitive, however, like the PFNN, it can struggle
when limbs have distinct phase cycles (Figure 9). We believe that
the LPN network’s use of explicit phase features for gating allow it
to separate of such styles more easily. This also further validates
the utility of designing source functions for local phases.

Table 2: Storage and Runtime Comparisons. A.S.N., S.M.N. &
P.S.R. show parameter counts for the animation synthesis

network, stylemodulation network and per style at runtime.

Runtime (ms) shows themean and standard deviation of the

average time to calculate the next frame over five runs.

Model A.S.N. S.M.N. P.S.R. Runtime (ms)

PFNN One-hot 2,436,380 194,560 2048 0.78 ± 0.01
LPN One-hot 4,935,928 389,120 4096 4.11 ± 0.02
PFNN Resad 2,436,380 2,978,440 31,352 0.92 ± 0.01
LPN Resad 4,935,928 24,952,320 262,656 4.78 ± 0.06
PFNN FiLM 2,436,380 35,668,530 2048 1.37 ± 0.02
MANN FiLM 4,870,392 35,668,530 2048 4.48 ± 0.04
LPN FiLM 4,935,928 35,668,530 2048 4.53 ± 0.04

5.2 Numerical Comparisons

We now turn to a brief quantitative analysis of our models.

5.2.1 Computational Costs. Initially we consider the memory foot-
print and runtime of each of the models, see Table 2. Although all
models remain comfortably able to perform at 60fps, the improved
modelling of the LPN (and MANN) comes with an additional run-
time cost. Whilst these differences can be partly attributed to differ-
ing parameter counts they are also in part due to an optimisation
of the PFNN that scales poorly for gated expert systems. So in situ-
ations with small numbers of globally cyclic movements, using the
PFNN as the animation synthesis network may be preferable.

Arguably the most important column of Table 2 is P.S.R. - the pa-
rameters per style at runtime. This highlights that, in practice, FiLM
does not require its high number of style modulation parameters
(S.M.N. column) since the output can be pre-computed (Section 4.4).
This is in contrast to residual adapters, for which all parameters
must be saved as their input will change during inference. Further-
more, that LPN One-hot uses twice as many parameters per style
as LPN FiLM demonstrates the importance of the design choices
for how to apply the style representation to modulate animation
synthesis. This low cost for style representation additionally allows
us to cheaply save the pre-computed FiLM parameters and then
fine-tune the FilM generator to model new styles (see Section 5.3).

5.2.2 Test Error. Figure 10 shows test errors using seen styles and
unseen frames of motion. Our overwhelming finding is, like Mar-
tinez et al. [37], that mean squared error does not correlate strongly
with perceived qualitative performance (performing a ‘stuck’ aver-
age motion, can give very low average error). However, whilst this
does mean that one must take care not to over-interpret the results,
it does not mean that there is no insight to be gained.

What we do see in Figure 10 is that all the models using FiLM
have the lowest test errors which we again attribute to the increased
capacity of FiLM for changing the hidden features, as discussed
above. Furthermore, the difference between LPN Resad and PFNN
Resad suggests an importance for the CP decomposition [38] which
adds a phase dependence to the residual adapter (which we did
not replicate in the LPN due to the lack of a global phase). These
observations further emphasise that, in this situation, the induc-
tive biases underlying the choices for how to use the parameters
available are more important than the raw network capacity.
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Figure 10: Test Error. The error is divided into the mean

squared error (MSE) and the bone length loss (BLL).

5.3 Analysis and Extensions

Finally, we analyse our model within a wider theoretical context
and evaluate a method for extending our system to new styles.

5.3.1 Theoretical Analysis. Both FiLM and residual adaptation can
be seen as a special case of the Multi-Task Dynamical Systems
(MTDS) framework which models style by changing the parameters
of neural network layers [6]. To see this, we write a feed-forward
layer as 𝒉(𝑖+1) = 𝜎(𝑾𝒉(𝑖) +𝒃), with 𝜎 a non-linearity, 𝒉(𝑖) the hidden
units for layer 𝑖 , and𝑾 , 𝒃 the layer weights and biases. If we then
represent the element-wise FiLM scaling for style 𝑠 using diagonal
matrix𝑾𝑠 , with the individual scaling factors on the diagonal, and
keep the FiLM shift vector 𝜷𝑠 , we can rewrite FiLM as:

𝒉(𝑖+1) = 𝜎
(
𝑾𝑠 (𝑾𝒉(𝑖) + 𝒃) + 𝜷𝑠

)
= 𝜎

(
𝑾 ′𝒉(𝑖) + 𝒃 ′

)
, (6)

where𝑾 ′ =𝑾𝑠𝑾 and 𝒃 ′ =𝑾𝑠𝒃 + 𝜷𝑠 are the new parameters - a
specific parameter manipulation, as done more generally in MTDS.

However, capturing styles with weight matrices is expensive.
Sharing parameters across all styles allows us to be more compact
with our style representation, as style agnostic variation can be
modelled with one shared set of parameters. Compared to other
methods [6, 38], our style representation is significantly smaller.

5.3.2 Modelling New Styles. Despite the size of the 100style dataset,
training does not give a dense enough sample of the style space
to achieve robust generalisation to unseen styles [31]. A natural
question then, is how we could model new styles with our system.

We can view LPN parameters as a style agnostic motion represen-
tation to which we simply need add the correct representation for
the new style. Assuming we have training data for a new style we
can simply fine-tune the FiLM generator (red box in Figure 3) while
freezing the parameters of the LPN to extract such a representation.
Note that for the one-hot approach, learning a new style would
require retraining all network parameters, and for residual adapters
would require storing another large set of parameters (Table 2).

Figure 11 gives some intuition forwhy this approachmakes sense.
In Figure 11a FiLM parameters for different styles before performing
fine-tuning are visualised; we see clear separation for the styles
the network was trained on, but for unseen styles the separation
is worse, suggesting the FiLM generator has not extracted specific
style representations. After fine-tuning (Figure 11b), we see that
unseen styles are well separated at their own location in the style
space. Qualitative results are shown in the supplementary video.

(a) Before Fine-Tuning (b) After Fine-Tuning

Figure 11: t-SNE. FiLM parameters calculated from 50 clips

of each style are clustered with t-SNE [36]. Shown are 15

styles from the training set (pastel colours) and 3 unseen

styles (black circles, blue squares, red triangles). After fine-

tuning the unseen styles show much clearer separation.

6 DISCUSSION

From a single stylised motion clip we can now generate arbitrary
length user controlled motions in a variety of styles (Figure 1). In
this section we highlight arising areas useful for further discussion.

What is Style Anyway? By using a shared set of LPN parameters
our model implicitly assumes motion content to be ‘the things that
are the same across styles in the dataset’ and motion style to be
‘all the remaining things that differ’, that is we make a content
invariance assumption [54]. However, this is not the only possible
definition of style which is a subjective and creative concept. We
hope that this work may be useful for future creative systems.

Source Function Design. In Section 4 we saw that the extraction of
local phases is really a question of source function design. We have
provided one possible source function that works for our use case,
but we believe there is a large scope for designing different source
functions for different tasks. For example, our source function does
not handle stochasticity well, so designing contact-free techniques
for new situations is be a useful direction for further exploration.

Physics Understanding. Finally, whilst our model interpolates
smoothly, it often takes a direct path between motion styles which
can lead to physically implausible poses (clipping). The constrained
generality of human motion almost certainly requires some under-
standing of physics and further investigating systems that learn
world models [19] to encourage physics understanding [16], or di-
rectly adding skeletal awareness to neural networks [2], may allow
us to generalise future models over the entire motion space.

7 CONCLUSION

This work has explored the style modelling task for humanoid an-
imation. By creating and releasing the new 100style dataset, we
were able to pose challenges to existing systems and motivate solu-
tions in the form of (contact-free) local phases and higher capacity
feature-wise linear transformations. Our compact but powerful
style representation showed meaningful linear interpolations in
the learned style space and, by improving animation synthesis, we
were able to model a wider variety of motions.
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