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Abstract
This thesis will present a number of investigations into how machine learning systems,

in particular artificial neural networks, function in changing domains. In the standard

machine learning paradigm a model is evaluated on held out (test) data from the same

dataset the model is trained on. That is, across training and test splits, the data is

independent and identically distributed. However, in many situations, after a model is

trained we encounter related but different data (out of distribution) on which we hope

to use our model. This thesis is concerned with methods for how we can adapt our

model to work well on such new data and additionally considers the restriction that

very often there may not be large amounts of data to adapt on.

In the first part of the thesis we examine a challenging application situation in real-

time animation systems. We focus on changing styles of human locomotion, build-

ing systems that can model multiple styles at once and rapidly adapt to new styles.

By augmenting state of the art systems with style modulating residual adaptation or

feature-wise linear modulation we are able to model large numbers of styles at high

levels of detail. We also make contributions to the general modelling of locomotion

with the creation of contact-free local phase labelling.

In the second part of the thesis we examine the problem in more controlled settings.

We present a technique for general adaptation in situations where the change in domain

is caused by a change in measurement system and the original training data is not

available (source-free). By aligning activation distributions, and training in a bottom-

up manner, we achieve improvements in accuracy, calibration and data efficiency over

existing techniques. We additionally analyse the effects of changing domains at the

unit (or neuron) level, showing how changes in individual unit’s activation distributions

can reveal network structure and may be able to give us cues for faster adaptation via

improved credit assignment.

In summary we highlight the importance of few-shot adaptation in multiple different

settings and show how different techniques can be used productively to solve prob-

lems in these areas and provide inspiration for the next generation of machine learning

models that should be able to learn continually from small amounts of data.
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Chapter 1

Introduction

There remains a large gap between the performance and behaviours of current deep

learning systems and the abilities shown by biological systems. In particular, in the

ability to continually learn rapidly from small amounts of data. This thesis details a

number of investigations in adapting learned artificial neural network models to new

data distributions where only a small number of samples may be available.

1.1 Thesis Overview

The standard machine learning paradigm assumes one fixed data distribution which is

split into training, validation and testing sets (Murphy, 2012, Chapter 1). In particular

we assume that data is independent and identically distributed (i.i.d.) across sets. In

real applications a machine learning model will often be developed using some col-

lected and curated dataset and then deployed into production where the task remains

the same but the data distribution may change. In this case, the model will receive

samples that are out of distribution (o.o.d.).

After model deployment a change in data distribution can occur for any number of

reasons (Quionero-Candela et al., 2009) and will, in all likelihood, reduce model per-

formance. In this situation we have three options open to us: do nothing; retrain the

model from scratch, or adapt on data from the new distribution. Doing nothing is

equivalent to assuming the data is i.i.d. and hoping the drop in performance is not too

severe. Retraining the model from scratch can be a valid solution although this may

require expensive collection of data, long training times and fails to make use of the

1



Chapter 1. Introduction 2

learning performed on the training data distribution. Therefore, the most elegant solu-

tion, and the solution we focus on in this thesis, is to adapt on data from the new data

distribution. By adapting the trained model we aim to transfer learned knowledge and

use this to increase data efficiency and reduce training times.

So, we know we want to adapt trained models, but what does good adaptation look

like? Given that we may not have a lot of data from the new data distribution, i.e.

the few-shot scenario, we work under the assumption that good adaptation will often

involve changing few model parameters. When we have limited data we must take

great care to avoid overfitting so aim to reduce the model’s capacity by reducing the

number of trainable parameters. This is motivated by the intuition that models with

high capacity are more prone to overfitting (Goodfellow et al., 2016, Chapter 5). Fur-

thermore, taking a connectionist viewpoint, all learned knowledge in a neural network

is stored in the connection weights. If we reduce the number of parameters that need

to be adapted, we increase the number of connection weights that remain constant,

maintaining more learned structure about the task we wish to solve.

This thesis is titled Few-Shot Learning in Changing Domains and throughout we inves-

tigate problem scenarios where we wish for models to well handle data from different

probability distributions. Very often we will additionally consider the low-data sce-

nario. Whilst biological systems demonstrate abilities to adapt quickly to unseen data

samples (Hiratani and Latham, 2020), deep neural networks do not generalise in the

same way (Geirhos et al., 2019a). However, the gap in behavioural performance has

been dropping during the years of this thesis’ development (Geirhos et al., 2021).

1.2 Thesis Outline

All work herein concerns changing data distributions. Still, the content of this thesis

can be broadly divided into two parts. We begin the thesis by outlining a theoretical

background that justifies our approaches in Chapter 2. We give a formal definition of

domain shift and demonstrate how this links with notions of style and content.

Part I (Chapter 3). We concern ourselves first with practical applications of models

that can handle data from multiple domains. In particular, style modelling in neural

animation synthesis systems. Such systems are designed for generating realistic user

controlled animations and have applications in various areas of computer graphics.

In Part I we create large datasets containing multiple styles of humanoid locomotion
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data. By considering this data in terms of style and content factors we aim to learn

content invariant parameters, shared across all styles, and separate style (or domain)

specific parameters. We show that this approach allows us to efficiently model arbitrary

numbers of locomotion styles in high quality. By reducing the capacity of style specific

modelling, by reducing the number of style specific parameters and increasing other

forms of regularisation, we can examine the learning of new styles with limited data.

Finally, we consider existing approaches for animation style modelling applications

and provide engineering adjustments to achieve improved qualitative performance.

Part II (Chapters 4 & 5). In the second part of the thesis we turn to more fundamen-

tal approaches. In particular, we focus on adapting to a tightly defined set of possible

changes in data distribution, and analyse approaches for adapting to such changes using

carefully designed datasets. We begin in the source-free domain adaptation scenario

where the original data used to train a model is not accessible but we still wish to adapt

to a change in data distribution. We compare methods that work to make predictions

more confident on the new data with methods that attempt to align the latent feature

distributions between the original training data and the new deployment data. We show

that by flexibly parameterising marginal feature distributions we can achieve improve-

ments over existing methods in terms of accuracy, calibration, and data efficiency.

Part II also contains an investigation into how we may be able to automatically select

which few model parameters to update for an unknown change in data distribution.

By working with a controlled setup, we show that differences in unit-level activation

distributions align with our intuitions about which parameters should update and use

this to motivate an improved method for automatic data-dependent credit assignment.

We conclude the thesis with a recap of our finding in Chapter 6 where we draw links

between our methods and the broader picture of learning intelligent systems. We addi-

tionally provide several appendices for completeness.

1.3 Statement of Contributions

The majority of the original material, results and figures in this thesis are derived from

the following works:

Chapter 3 - Style Modelling in Neural Animation Systems:

• Few-shot Learning of Homogeneous Human Locomotion Styles (2018). Ian Ma-
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son, Sebastian Starke, He Zhang, Hakan Bilen, Taku Komura. Published in:

Computer Graphics Forum, 37(7). Mason et al. (2018).

This work lays out a framework for modelling multiple styles of human locomo-

tion in a neural network based animation system, with particular focus on dealing

with the low-data regime through the bias-variance tradeoff. The implementa-

tion and development of this work was completed by Ian Mason with minor

technical advice from Sebastian Starke and He Zhang. Supervision and project

development guidance was received from Hakan Bilen and Taku Komura.

• Real-time Style Modelling of Human Locomotion Using Feature-Wise Transfor-

mations and Contact-Free Local Phases (2021). Ian Mason, Sebastian Starke,

Taku Komura. Published in: Proceedings of the ACM on Computer Graphics

and Interactive Techniques, 2022. Mason et al. (2022)

Extends the ideas from Few-shot Learning of Homogeneous Human Locomotion

Styles, offering improvements to both the animation synthesis network and the

style modelling methodology. We additionally create a large dataset of stylised

locomotion to better evaluate the differences between models. The implemen-

tation and development of this work was completed by Ian Mason, with im-

plementation advice and project development input from Sebastian Starke, and

supervision and project development from Taku Komura.

Chapter 4 - Feature Restoration for Source-Free Domain Adaptation:

• Source-Free Adaptation to Measurement Shift via Bottom-Up Feature Restora-

tion (2021). Cian Eastwood*, Ian Mason*, Christopher K. I. Williams, Bern-

hard Schölkopf. Published in: International Conference on Learning Represen-

tations, 2022. Eastwood et al. (2022).

In specific situations, we can expect that learning to extract features with the

same semantic meaning, across new out of distribution data and the original

training data, is sufficient to achieve good model performance on new o.o.d.

data. This work describes such situations and presents a feature restoration

method which has substantial benefits for model calibration and data efficiency.

The implementation and development of this work was completed jointly by Ian

Mason (IM) and Cian Eastwood (CE) with supervision and project development

from Chris Williams and Bernhard Schölkopf.

Disentangling exact contributions to this work is a challenge. This project was
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completed as a joint effort over a two year period of meetings, failed ideas,

brainstormed solutions, joint writing sessions, results evaluations and more. This

work is published as an equal contribution from CE and IM but is presented in

full in this thesis in order to tell a complete story. As it is a requirement to try

and disentangle collaborative contributions, I have tried to provide some clarity

by highlighting key points in the journey to publication. I maintain however,

that the assigning of granular intellectual credit is not a fruitful activity due to

the intangible contributions of participants in collaborative projects. That is, the

whole is greater than the sum of the parts.

The initial exploration and validation of the ideas behind our approach, and

an initial code framework including the creation of EMNIST-DA were done by

CE. From here IM and CE worked jointly on the project. MNIST datasets and

CAMELYON17 were added by IM, CIFAR datasets by CE. The final experiments

were refactored and run by IM, with CE creating the paper outline, develop-

ing the background theory (with BS and CW) and outlining the feature restora-

tion framework. IM drafted the experiment explanations and limitations to slot

into the story created by CE. The writing, experimental setups, theoretical back-

ground, and explanations were carefully discussed and refined jointly for the

final submission.

Chapter 5 - Novel Approaches with Unit-level Surprise:

• Unit-level Surprise in Neural Networks (2021). Cian Eastwood*, Ian Mason*,

Christopher K. I. Williams. Published in: NeurIPS 2021 Workshop: I (Still)

Can’t Believe It’s Not Better. Eastwood et al. (2021).

One avenue for improving data efficiency in neural networks is a better under-

standing of credit assignment, that is, which neurons should be responsible for

updating to adapt to new data. This work presents one possible way to think

about this problem by asking which units in an artificial neural network are most

‘surprised’ by the new data. We show that patterns of surprise closely match our

intuitions about credit assignment and discuss the potential of, and the issues

with, this approach going forward. The implementation and development of this

work was completed jointly by Ian Mason and Cian Eastwood with supervision

and project development from Chris Williams.

This work came out of ideas discussed and developed while creating Source-
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Free Adaptation to Measurement Shift via Bottom-Up Feature Restoration. The

contribution story remains much the same with the initial exploration being used

for both projects. CE developed surprise-based update rules with IM creating

FlexTune comparisons. Writing was performed in a similar manner with CE

outlining the story and developing the background and IM running and explain-

ing the experimental section. Again, choices for what analyses and experiments

to run, along with how to present the ideas in the final submission, were made

jointly.

*Denotes equal contribution.



Chapter 2

Theoretical Background

In this thesis, each chapter will outline the related work specific to the topics therein.

However, before we begin the main content, we will briefly outline certain themes

that underpin all the work that will be presented, namely domain adaptation, style &

content, and few-shot learning. In this chapter we will give an overview of these high

level areas and touch upon the related literature.

2.1 Domain Shift and Domain Adaptation

In the machine learning literature domain adaptation, domain shift and transfer learn-

ing are extremely related, often overlapping, concepts used differently by different

authors. In this section we will outline how these concepts relate to one another and

explain how they should be viewed in the remainder of this thesis.

2.1.1 Domain Shift

Contrary to the common independent and identically distributed assumption, very of-

ten when building machine learning systems the data which a deployed model receives

(test/deployment data) is somehow different from the data on which it was trained

(training/development data). For example, an image classification system may be

trained on photorealistic synthetic images and during deployment have to classify im-

ages from cameras that process photographs differently (Liu et al., 2020). Alternatively

different hospitals may use different methods or equipment for imaging, so data from

a new hospital may differ from the model’s training data (Guan and Liu, 2021).

7
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Figure 2.1: Different data generating processes lead to different types of dataset shift

as described in Storkey (2009). Darker circles highlight the variables that change under

the dataset shift in question.

This phenomenon is known as dataset shift (Quionero-Candela et al., 2009; Moreno-

Torres et al., 2012; Wiles et al., 2021). We can formalise this as taking two datasets,

Dtr = {(x(i),y(i))}Ntr
i=1 and Dte = {(x(i),y(i))}Nte

i=1, the training and testing data respec-

tively, consisting of predictor data points x(i) and associated target labels y(i), where

the data distributions, Ptr and Pte, are different. That is, Ptr ̸= Pte. The data from Pte

is said to be out of distribution (o.o.d.) and whilst this could be taken to mean any

type of change in data distribution (e.g. classifying images to classifying audio), more

commonly the development and deployment distributions are closely related. Dealing

with dataset shift is a large area of research, as almost all machine learning models are

vulnerable to changes in data distribution (Torralba and Efros, 2011; Kurakin et al.,

2017; Recht et al., 2019).

One useful way to think about dataset shift is to examine the different ways in which

it can occur. This is important as different types of dataset shift may be best dealt with

in different ways. A non-exhaustive list of the ways in which dataset shift can occur is

given by Storkey (2009), from which we highlight three examples in Figure 2.1.

Figure 2.1a shows simple covariate shift. In this case, the data generating process as-

sumes that prediction (or output) variables, y, are caused by covariates (or input vari-

ables), x. That is, the covariates have some distribution, P(x), from which the output

variables are generated according to some other distribution, P(y|x), giving the data

distribution, P(x,y) = P(y|x)P(x). The dataset shift itself (simple covariate shift) oc-

curs due to a change in the distribution of covariates, P(x). If we have learned a model

for P(y|x) that accurately captures the distribution, a change in covariate distribution

should not require any change in the learned model. However, in practical situations

there may some benefits to accounting for simple covariate shift (Shimodaira, 2000;
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Sugiyama et al., 2007; Storkey, 2009).

Figure 2.1b shows mixture component shift. For this type of dataset shift, samples

(x,y) are assumed to come from multiple different sources, with the ratio of samples

from each of the sources changing between model training and testing. For example,

we may think of samples as being noisy observations drawn from one of three un-

derlying functions (i.e. y = fi(x)+ ε for i ∈ {1,2,3}), with a change in the frequency

with which we select to draw from each of the functions causing the dataset shift. In

Figure 2.1b the change in source component proportions is represented by changing

variables S.

Figure 2.1c shows domain shift. In this case we suppose some underlying domain

invariant latent representation of the data, L = l, that causes the observations (x,y).

However, covariates x may be changed by a change in domain specific, or environment,

variables E. We can think about this concretely by considering the observed covariates

to be a domain dependent mapping, mE , of the underlying latent representation, so

x = me(l). A change in E changes the mapping. As an example, we could think of L

as a variable for the ‘true’ underlying colour of an object in a scene which we wish to

classify as being a primary colour or not. A change in E could be a change in rendering

pipeline or scene lighting that changes the appearance of the colour in the scene, X .

When E changes our observation x will change, but the underlying colour l and label

y remain fixed.

This thesis largely focuses on these domain shift data generating assumptions, and

variations upon them. In particular we will consider data which we presume to have

some underlying latent representation (L) unchanging across changing domains. Much

of our focus will be on how we can extract or recover this representation in the presence

of nuisance variables (E) that change model behaviour when a change in domain occurs

(the dataset shifts).

2.1.2 Domain Adaptation

Domain adaptation is commonly framed as taking a model trained on one or more

source domains, with data distribution Ps, and adapting the model to work well on one

or more target domains, with target domain t having data distribution Pt (Zhang et al.,

2013; Kouw and Loog, 2018). In particular, source and target domains have different

data distributions, Ps ̸= Pt . Note that this is exactly the dataset shift scenario described



Chapter 2. Theoretical Background 10

in Section 2.1.1, that is, domain adaptation is the task of adapting to dataset shift using

the shifted (test) data. Domain adaptation on domain shifts is the task of adapting a

model to dataset shifts of the form shown in Figure 2.1c (i.e. E changes).

There are many different approaches to domain adaptation and many different areas

where domain adaptation methods are applicable (Ramponi and Plank, 2020; Toldo

et al., 2020; Guan and Liu, 2021). For our purposes we make a distinction between

model-free approaches, which make no assumptions about the distributional form of,

and do not explicitly parameterise, Ps,Pt ,P(L), P(X) or P(Y ) (Ganin and Lempitsky,

2015; Long et al., 2018), and model-based approaches, which assume certain distribu-

tional forms for, or explicitly parameterise, Ps,Pt ,P(L), P(X) or P(Y ) (Sun and Saenko,

2016; Zellinger et al., 2017). In some sense, even classic fine-tuning approaches (Gir-

shick et al., 2014; Zeiler and Fergus, 2014) can be seen as domain adaptation under

our definition of adapting a model to some dataset shift. However, commonly domain

adaptation is necessary without access to labelled target domain data (unsupervised

domain adaptation).

Domain adaptation is commonly associated with, and sometimes used interchangeably

with, transfer learning. It is more accurate to consider domain adaptation to be a subset

of transfer learning. In general we consider transfer learning to be any type of mod-

elling task where learned information can be transferred from some already pretrained

model(s). An example of transfer learning that is not domain adaptation is when the

dataset does not shift but the task being performed with the data changes (Goodfellow

et al., 2016, Section 15.2) (e.g. image classification to visual question answering).

Another closely related area is domain generalisation, where the aim is to learn the

source model in such a way that it is able to perform well on unseen target domains

without adapting on the test data. This can be achieved through data augmentation or

inductive biases about the dataset shifts that may occur upon deployment (Lake et al.,

2015, 2017; Raissi et al., 2019; Michaelis et al., 2019; Djolonga et al., 2021).

2.2 Style and Content

One way that machine learning practitioners have chosen to view certain data, X , is as

being generated by style factors, S, and content factors, C (Tenenbaum and Freeman,

1996; Jing et al., 2019; Jin et al., 2021), see Figure 2.2a. This has allowed for the

creation of neural style transfer algorithms (Gatys et al., 2015) and, with this view,
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Figure 2.2: Style and Content. (a) The data generating graph is the same as domain

shift (Figure 2.1c) with no label. (b), (c), (d) Stylising an image with neural style trans-

fer. A style image (b, Picasso’s Mediterranean Landscape) is combined with a content

image (c, The Shore, Leith), to create a stylised image (d) using an online neural style

transfer tool (Nakano, 2018).

combining the content from one datapoint with the style of another has been used for

many creative applications (Johnson et al., 2016; Holden et al., 2017a; Shen et al.,

2017). We show an example of combining the content of one image with the style of

another in Figure 2.2d.

2.2.1 The Content Invariance Assumption

From a semantic or creative viewpoint ‘style’ can have many meanings (Jin et al.,

2021). For example, are the famous swirled stars of Van Gogh’s Starry Night part of

the content of the image or the style? We take the view that the content is the concepts

and objects that would be consistent in the image were another painter to paint the

same scene. That is, we use a data-driven definition of style that we refer to as the

content invariance assumption (von Kügelgen et al., 2021). For a dataset that contains

data in multiple styles, style should capture the factors that vary and content the factors

that do not.

If we now return to Figure 2.2a, this assumption is captured by the changing S variables

coloured in dark grey. If we compare this figure to the domain shift graph (Figure 2.1c)

we see that these are in fact the same data generating assumptions as domain shift if

we drop the label Y . So if we care only about generative models modelling P(X), mod-

elling style and content under the content invariance assumption is the same problem

as handling domain shift. Changing environment variables or nuisance variables, E, in

Figure 2.1c corresponds to changing style, S, in Figure 2.2a. The underlying domain

invariant latent representation L corresponds to the content C.
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2.3 Few-shot Learning

Whilst the most successful modern deep learning models leverage vast quantities of

data (Brown et al., 2020; Radford et al., 2021), humans and animals are able to learn

new tasks and concepts quickly with limited numbers of examples (Lake et al., 2019;

Hiratani and Latham, 2020). Few-shot learning (Wang et al., 2020) is the task of

learning from small amount of data. One-shot learning is the even more restricted task

of learning from a single sample (Fei-Fei et al., 2006), in general we can use N-shot

learning to refer to learning from N samples.

Few-shot learning is closely related to domain adaptation. Firstly, after a dataset shift

there is no guarantee that we will be able to collect large amounts of data from the

new data distribution; it may be prohibitively expensive or time consuming to do so.

Therefore adapting to a new domain often requires additionally considering that the

adaptation may need to be performed few-shot. This partnering of few-shot learning

and domain adaptation provides the area in which this thesis, Few-Shot Learning in

Changing Domains, is situated.

Few-shot learning is also closely related to domain adaptation as it almost always re-

quires some form of transfer learning. Following the taxonomy of Wang et al. (2020)

three major approaches to few-shot learning are: using prior knowledge to augment

the few-shot data in order to train a more accurate model (Shyam et al., 2017; Benaim

and Wolf, 2018); using inductive biases to restrict the model capacity allowing better

performance with small amounts of data (Lake et al., 2015; Motiian et al., 2017; Zhang

et al., 2018b; Finlayson, 2020, Chapter 0), and providing good parameter initialisations

(Caelles et al., 2017; Finn et al., 2017; Arik et al., 2018; Nichol et al., 2018) or learned

optimisers (Li et al., 2017b; Ravi and Larochelle, 2017) to give the few-shot data a

better chance to achieve a good solution.

Throughout this thesis our approach for dealing with few-shot data will be to combine

suitably setting a model’s capacity (inductive biases) with learning from good param-

eter initialisations (transfer learning).
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Style Modelling in Neural Animation

Systems

X

S C

(a) Style and content (b) Modelling large numbers of stylised motions

Figure 3.1: Modelling changing styles for humanoid animation. (a) Data generating

assumptions. (b) Examples of styles our local phase based system can model.

We begin our exploration of changing domains by examining style and content as it

applies to human motion. Figure 3.1a recaps our data generating assumptions, that

is, we observe some motion data, X , which is assumed to be created from underlying

style factors, S, and content factors, C. Given a large dataset of stylised human motion,

labelled with styles, we can use the content invariance assumption (Section 2.2.1) to

assume that those (latent) factors that are consistent across styles are the content factors

and those (latent) factors that differ across styles are the style factors.

That is, we assume, for a given motion, the existence of some latent motion represen-

tation shared and invariant across all styles. This is equivalent to the latent representa-

tion L shared across domains in the general domain shift case (Figure 2.1c). Similarly

a change in style specific factors is equivalent to a change in environment variables

13
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E. With this view, style and domain may be used interchangeably and having labelled

styles is equivalent to knowing which domain a datapoint comes from.

In this chapter we assume we have access to data from multiple domains/styles and use

this to tackle two tasks. First, we try to learn the latent content factors, C, and separate

them from style factors, S, to allow us to switch between styles of motion, which

has many practical uses in computer animation (that is, we change domains/styles

by changing the learned environment/style factors). After doing this, we then aim to

few-shot learn the domain/style specific factors for a new style. The main idea being

that given a large amount of initial data, with sufficient styles, we can learn a content

extractor general across styles. Therefore, for a new style we need only learn a few

style specific parameters and hence reduce the amount of data required to learn to

model the new style.

The work presented in this chapter is concerned with this practical application of do-

main adaptation; changing domains in order to qualitatively change the style of human

locomotion animations. We develop specific engineering techniques and inductive bi-

ases in order to achieve high quality results, and examine the learning of new domains

with low amounts of data.

As mentioned above, understanding style as it applies to human motion has many

practical applications in computer graphics, such as showing character personalisation

or emotional expression through walking gait differences, or editing animation systems

based on a video game character’s interaction with the world (e.g. injury or disguise).

Indeed, style transfer has a long history in computer animation research (Hsu et al.,

2005; Liu et al., 2005; Taylor and Hinton, 2009; Aberman et al., 2020). Such work

has largely tackled offline style transfer where the aim is to explicitly replace the style

factors of one motion clip with those of a different motion clip while maintaining the

content (the same approach as done for images in Gatys et al. (2015) and in Figure 2.2).

In order to do this, methods have been developed that make use of explicit timing or

foot contact adjustments to create realistic motions (Xia et al., 2015).

A second important recent development in animation research is the creation of neu-

ral animation synthesis systems (Fragkiadaki et al., 2015; Holden et al., 2017b; Starke

et al., 2020). These neural network based approaches avoid the need for explicit timing

adjustments by generating successive frames of motion autoregressively, automatically

capturing how poses, stepping patterns, and global timing change over time. Addi-
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tionally, many such systems are able to synthesise controllable animation purely from

previous frames and some high level user input such as a path or trajectory to follow

(Holden et al., 2016).

So, whilst style transfer methods cannot easily be applied for user controlled anima-

tion synthesis where future timing and contact information is unknown and animations

may be arbitrarily long, most animation synthesis systems fail to account for multiple

modalities (styles) of movements and offer limited ability for editability of the type of

motion being generated once they are trained. By combining ideas from both these ap-

proaches, we can create user controlled animation synthesis that can switch between a

wide variety of motion styles. We refer to this task as neural style modelling. Qualities

that we look for in good style modelling systems include: the ability to model arbi-

trary numbers of styles; the ability to easily add new styles to the model; high quality

generation of stylised motion conditioned on high level user input, and the ability to

interpolate or transition well between styles.

Our general framework for real-time style modelling involves learning two neural net-

works. Firstly, an animation synthesis network that predicts the next frame of motion

conditioned on the past frames, user control and style information. Crucially, we share

animation synthesis parameters across styles to encourage content factors to be cap-

tured by this network, making the content invariance assumption over motion capture

datasets containing multiple styles. To model style we create a style modulation net-

work that transforms the (hidden representations of the) animation synthesis network

(Bird, 2020, Chapter 5). We use a learned style representation which allows us to effi-

ciently model the style space whilst being able to generate motions in multiple styles.

This chapter begins with an overview of related work in animation synthesis, style

transfer and style modelling. Afterwards, we examine style modelling in the low data

regime. One of the challenges for neural style modelling is a lack of availability of

large amounts of stylised motion capture data, so we design our approach with an

ability to learn from small amounts of data in mind. To end the chapter we turn towards

engineering improvements for style modelling, creating a dataset with a large number

of stylised motion capture frames and zooming in on the design choices for animation

synthesis and style modulation networks.
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3.1 Related Work

During the development of this thesis the number of works using machine learning

approaches for skeleton-based human animation and style transfer has increased dra-

matically (Mourot et al., 2021), this section gives an overview of those most related to

the work herein.

3.1.1 Data-Driven Animation Synthesis

Classic methods for modelling motion made use of various approaches such as blend-

ing radial basis functions (Rose et al., 1998), principal component analysis (Safonova

et al., 2004), and Gaussian processes (Mukai and Kuriyama, 2005; Ikemoto et al.,

2009), but, as with many areas (LeCun et al., 2015), has come to be dominated by

neural network based learning approaches. An early model (Fragkiadaki et al., 2015)

used a sequence learning approach to build an encoder-recurrent-decoder architecture

making use of LSTM cells (Hochreiter and Schmidhuber, 1997) to predict short mo-

tion sequences from given input frames. This approach was extended by Li et al.

(2018b) who used scheduled sampling (Bengio et al., 2015) to allow for the genera-

tion of longer animation sequences. Holden et al. (2016) created a general framework

motion synthesis by learning a manifold of human motion, Bütepage et al. (2017) com-

pared several different architectures for motion generation, and Martinez et al. (2017)

demonstrated that low quantitative error does not always correspond to high qualitative

performance in generative models for motion by using a baseline model that predicts a

constant pose.

The most closely related works to our approach learn to synthesise animation in a con-

trollable manner given high level user input. The Phase-Functioned Neural Network

(PFNN) (Holden et al., 2017b) was designed to implicitly align motion capture data

using a global cyclic phase to modulate the weights of a neural network, this allows

for the generation of high quality user controlled motion. However, the formulation of

a global phase does not apply for all animation synthesis tasks so Zhang et al. (2018a)

and Starke et al. (2019) extended this approach to quadruped motion and character

scene interaction using a learned blending of expert weights. Starke et al. (2020) addi-

tionally experimented with the use of local motion phases for generating high quality

interactive basketball animations. Ling et al. (2020) opt to use variational autoencod-

ing (Kingma and Welling, 2014) over standard feed-forward architectures, and Henter
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et al. (2020) use normalising flows (Kingma and Dhariwal, 2018). However, none

of these approaches explicitly consider the modelling of multiple styles and make no

modifications to encourage the learning of style and content.

Whilst this chapter deals with kinematic approaches to animation synthesis it would

be remiss to not briefly mention that a number of authors have instead taken a physics

based approach, commonly using reinforcement learning. Mimicking motion capture

data using imitation learning whilst accounting for physics with a physics engine has

allowed for the creation of controllable animations in simulation (Merel et al., 2017;

Wang et al., 2017; Peng et al., 2018b). An additional use case involves the use of

world models (Ha and Schmidhuber, 2018) for motion tracking (Fussell et al., 2021).

Whilst making use of physics engines can help prevent impossible poses, the animation

quality of such approaches has not yet reached that of competing kinematic methods.

3.1.2 Style Transfer and Style Modelling

Similarly to animation synthesis, multiple different angles for tackling style transfer

were developed before neural network based approaches became increasingly popular

in recent years. For example, Hsu et al. (2005) developed a correspondence algorithm

to align motions and model style differences, and Liu et al. (2005) used a physics

based optimisation. An early learning approach used factored conditional restricted

Boltzmann machines (Taylor and Hinton, 2009) and conditioned on a style label, al-

though, as a more theoretical work, lacked the high quality demos common to other

methods. Other notable approaches include those of Xia et al. (2015) who constructed

a mixture of regression models combined with a nearest neighbours database search

to map style onto content, and Yumer and Mitra (2016) who model motion in spectral

space to hand design a frequency domain based algorithm for the same task.

Many modern methods for style transfer in animation take inspiration from methods

first developed for images. For example, Gatys et al. (2015) optimise to match Gram

matrices in the latent space of an image classification network to created stylised im-

ages (similar to those seen in Figure 2.2) and Holden et al. (2016) optimise using the

same matrices to transfer style between clips of motion. Johnson et al. (2016) take

inspiration from Gatys et al. (2015) to design a loss function to train a neural network

to perform style transfer on images and Holden et al. (2017a) do similarly for motion.

Multiple works show that applying affine transformation to hidden representations of

convolutional neural networks can also create aesthetically pleasing style transfer on
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images (Dumoulin et al., 2017; Huang and Belongie, 2017; Huang et al., 2018; Perez

et al., 2018); this approach has been used by Aberman et al. (2020) to transfer style

between 2D video and 3D skeletal motions. Finally cycle consistency losses have been

utilised to alter image style (Zhu et al., 2017a,b; Huang et al., 2018), this too has in-

spired works for motion style transfer (Dong et al., 2020) and retargeting (Villegas

et al., 2018). As all these methods take inspiration from preceding image style trans-

fer techniques they are designed for situations where both style and content are given

before performing style transfer. While these approaches are useful, for example for

augmenting datasets, they are not designed for use with animation synthesis systems

where future content rapidly changes as user input changes and motion may be arbi-

trarily long. Other approaches that are also designed to stylise a clip of content motion

include those of Du et al. (2019), Smith et al. (2019), Wen et al. (2021) and Park et al.

(2021).

There has been some limited work for style modelling in animation systems, that is,

changing style on the fly as user controlled content changes. Holden et al. (2017b) add

a one-hot vector to the PFNN which allows them to model a small number of styles, al-

though this representation is undesirable as it requires the total style count to be known

before training and with large numbers of styles many of the network’s parameters

are given over to handling the label. More recent motion matching systems (Clavet,

2016; Holden et al., 2020) produce high quality stylised motions but require storing

a database of motion capture clips (or some compressed representation) and learn no

explicit style representation, leading to increasing costs with increasing database size.

3.2 Style Modelling with Residual Adaptation

To create an initial system for style modelling we use a Phase-Functioned Neural Net-

work (Holden et al. (2017b), Figure 3.2) for animation synthesis; shared across all

styles, it aims to capture the content factors in the data. To model the style factors we

modulate the hidden units of the PFNN using residual adapters (Rebuffi et al., 2017,

2018).

3.2.1 The Phase-Functioned Neural Network

We use the PFNN because it encodes a strong inductive bias that human locomotion is

cyclic which allows for high quality modelling of motion with fairly cheap (shallow,
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Figure 3.2: A Phase-Functioned Neural Network. The weights used for prediction de-

pend on a phase label and are set by blending parameters using Equation 3.1.

feed-forward) architectures. Specifically we use a 3 layer architecture where the layer

parameters are themselves a function of the locomotion phase, p, which is a number

between 0 and 2π defined to be 0 when the right foot makes contact with the floor plane

and π when the left foot makes contact with the floor plane, with the phase values for

all other frames of animation data found via interpolation.

Specifically, we follow Holden et al. (2017b), using a cubic Catmull-Rom Spline to

blend four different ‘control points’, βββ = {ααα1,ααα2,ααα3,ααα4}, each themselves one possi-

ble setting of the neural network parameters. That is,

W(p;βββ) =αααk1 +d(
1
2

αααk2−
1
2

αααk0) (3.1)

+d2(αααk0−
5
2

αααk1 +2αααk2−
1
2

αααk3)

+d3(
3
2

αααk1−
3
2

αααk2 +
1
2

αααk3−
1
2

αααk0)

d =
4p
2π

(mod 1) (3.2)

kn =

⌊
4p
2π

⌋
+n−1 (mod 4), (3.3)

where W(p) = {W0(p),W1(p),W2(p)} is the three layers of network parameters of the

PFNN for phase value p.

3.2.2 Residual Adaptors

The PFNN originally made use of one-hot labels to model different modalities of lo-

comotion (i.e. styles such as crouching). However, for our initial style modelling we

make use of residual adapters (Rebuffi et al., 2017), that are essentially skip connec-

tions with a weight matrix. That is, if a standard feed-forward layer is written as
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h(i+1) = σ(Wh(i)+b), with h(i) the input, h(i+1) the output, σ some non-linearity and

W & b the layer parameters. Then a parallel residual adapter has the form h(i+1) =

σ(Wh(i)+b+Wresh(i)), where Wres is the weight matrix for the residual adapter (seen

in Figure 3.3).

Our aim with residual adaptation is to use the PFNN to learn style agnostic (content-

modelling) parameters and to learn a new residual adapter for each style we wish to

model. This is directly inspired by Rebuffi et al. (2017) who learn a set of domain

agnostic parameters with separate domain specific residual adapters for each domain

they wish to model1. As with Rebuffi et al., no explicit direction is provided in order to

separate out style and content factors of the data, instead we find empirically that this

behaviour naturally emerges by jointly training with multiple styles. One of the main

benefits of this approach is the ability to sequentially add new residual adapters once

the animation synthesis network has been trained, allowing us to model new unseen

styles without having to retrain the whole system as would be required with a labelling

approach. Additionally, the capacity of the residual adapters can easily be changed

depending on the problem they are used for by restricting, or increasing, the number

of available parameters. We will make use of this property when working in the low

data regime in Section 3.3.

3.2.3 Combining Animation Synthesis and Style Modelling

So, given a dataset containing a large number of motion capture frames in S styles

of locomotion, we aim to learn a set of style agnostic parameters for the PFNN βββag

and S sets of style specific residual adapter parameters {βββ(s)|s ∈ {1, . . . ,S}}. Note

that, in order to increase the representational power of the residual adapters and to

capture phase dependent style information, we make the residual adapters themselves

phase-functioned. That is, for a given style, s, at phase p, the residual adapter weights

are given by the function of the phase given in Equation 3.1, with control points βββ
(s) =

{ααα(s)
1 ,ααα

(s)
2 ,ααα

(s)
3 ,ααα

(s)
4 }. The style agnostic parameters, βββag, are shared between all styles

and have control points βββag = {ααα1,ααα2,ααα3,ααα4}.

For a datapoint (x(s),y(s)), where x(s) is one frame of animation data and y(s) is the sub-

sequent frame we wish to predict (in style s), x(s) is fed into the PFNN which uses style

1This approach of learning some domain agnostic parameters and some domain specific parameters

is common in domain adaptation. For example, when learning a shared encoder and domain specific

decoders (Mor et al., 2018).
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Figure 3.3: Style Modelling with Residual Adaptation. PFNN weights, shared across

styles, are shown in grey. Style specific, phase-functioned, residual adapter weights

are shown in other colours. Weights (W0, W1, W2, W (s)
res ) are calculated for a given

phase value using Equation 3.1. Phase omitted from figure for brevity.

agnostic weights, {W0(p),W1(p),W2(p)}, calculated from βββag using Equation 3.1. The

first layer of the PFNN, W0(p), processes the input frame x(s) into a hidden represen-

tation. This hidden representation is then modulated by style specific residual adapter

weights, W (s), calculated from βββs using Equation 3.1. W (s) aims to model style spe-

cific factors in the data, whilst the second layer of the PFNN, W1(p), aims to model

content specific (style invariant) factors. The final layer, W2(p), combines the style

specific and style invariant representations to predict the new frame y(s). Recall, that

the aim of this system is not to optimally model the training data, but rather to split

out the style (domain specific) and content (domain invariant) factors in order to be

able to replace the style factors of x(s) with those of a new style. Figure 3.3 shows

this architecture, with the shared style agnostic parameters shown in grey and the style

specific parameters shown in different colours.

3.3 Few-shot Development

One challenge with style modelling is data availability. Neural networks are notori-

ously data hungry and we can never capture all possible styles of motion. If we wish

to learn to model a new (unseen) style, capturing sufficient data may be expensive and

time consuming or not possible due to the need to access specialist motion capture
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Figure 3.4: Overfitting. When only a small amount of training data is available it is easy

to overfit, here a character walks reasonably in a straight line but creates unrealistic

poses when following turning trajectories unseen in the training data. To create this

visualisation a PFNN was trained on neutral locomotion data and fine-tuned with limited

stylised (bent forward) data.

equipment. For this reason it is desirable to have models that can learn new styles

from small amounts of data (few-shot). Training on smaller amounts of data also has

the advantage of requiring lower training times.

When we have only a small amount of data this may not capture an extensive range

of movements, perhaps containing only a short (1-5s) clip of stylised walking in a

straight line. In this case it is easy to overfit, simply mimicking the training data, and it

is challenging to generalise to new walking directions and speeds. Figure 3.4 shows an

example of this, where a character walking with the bent forward style is reasonably

modelled when moving in a straight line but becomes unrealistic when turning.

If we can learn a reasonable set of style agnostic parameters, which we attempt to do

using a large dataset of stylised locomotion, then our aim is to transfer this learned

knowledge to model changes in walking speeds and turning directions for new styles

with low amounts of data. With our fixed set of style agnostic parameters, βββag, we

can simply learn a new residual adapter to model a new style. Our basic approach

to working with small amounts of data is to change the residual adapter’s capacity to

qualitatively balance overfitting and underfitting (Goodfellow et al., 2016, Section 5.2).

We do this by using a canonical polyadic (CP) decomposition of the residual adapters

along with variable regularisation strength.
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3.3.1 CP Decomposition

To flexibly change the capacity of phase-functioned residual adapters we perform a

CP decomposition (Kolda and Bader, 2009) to reduce the number of style specific pa-

rameters. The CP decomposition can be seen as a generalisation of singular value de-

composition to higher dimensions. For our case we consider a 3D tensor W ∈ RI×J×K

where each matrix slice of the tensor, Wk, can be written as

Wk = AD(k)BT (3.4)

with A∈RI×R, B∈RJ×R, D(k) ∈RR×R and D(k) a diagonal matrix for k = 1, . . . ,K and

some positive integer R. Note that A and B are the same 2D matrices across all slices

whereas D(k) changes.

We need to use a tensor decomposition because of the phase-functioned nature of the

residual adapter parameters, in particular we consider the phase as the third dimen-

sion. To understand this we highlight that Holden et al. (2017b) discretised the phase

at runtime in order to improve inference speed. Specifically, Holden et al. saved 50

weight matrices, calculated using Equation 3.1, for phases [0,2π/50, . . . ,2π) and used

the weights associated with the closest phase value for a frame to make the next frame

prediction. By stacking these 512× 512 weight matrices, we can create a 3D tensor

of size 512× 512× 50. Using Equation 3.4, we can decompose each of the 50 slices

(which are the 50 saved weight matrices) into 3 matrices of sizes 512×R, R×R and

R×512. By changing R we can change the capacity of the residual adapter.

Since, for the CP decomposition, only the R×R matrix varies over the phase dimension

with the rectangular matrices fixed, this means that only this square diagonal matrix

has phase-functioned weights (weights that change as the phase changes). This means

that with the CP decomposition we are able to maintain phase dependence in the style

representations whilst also varying their capacity.

As in Zhao et al. (2017), we perform the CP decomposition before training, that is,

we learn factors A,B & D from Equation 3.4 directly. This approach allows us to

learn the best parameters for these factors during training. Doing this means that,

for a new style, we learn two (non phase-functioned) rectangular matrices with 512×
R weights and one phase-functioned diagonal square matrix, with R weights. Note

that this subtly changes βββ
(s), as now only the central matrix requires control points

{ααα(s)
1 ,ααα

(s)
2 ,ααα

(s)
3 ,ααα

(s)
4 }.
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Figure 3.5: System Overview. Style agnostic parameters, shared across all styles, are

learned in the animation synthesis PFNN network (bottom row). Style specific param-

eters are learned in a CP decomposed residual adapter (top row) which can change

capacity as the size of the central matrix changes. Phase-functioned weight matrices

are shown in blue, non phase-functioned weight matrices are shown in red. We use the

exponential linear unit (ELU) as our non-linearity Clevert et al. (2015).

An overview of our system, showing a decomposed residual adapter for a single style,

is shown in Figure 3.5. This figure highlights in blue those weight matrices which are

phase-functioned and in red those which are not.

3.3.2 Variable Dropout

Another benefit of each learned style having a corresponding residual adapter is that

this allows us to vary the regularisation strength depending on the data. A simple way

to achieve this is to vary the dropout rate when training with low amounts of data.

This variable dropping of connections in the residual adapter can intuitively be seen

as varying how much the network can rely on the style specific parameters versus the

style agnostic parameters. Whilst we could use alternative regularisation methods (L1,

L2), initial experiments found these to be roughly equally effective. Therefore, we use

dropout due to its simplicity and the intuitive trade off between style agnostic and style

specific parameters.

The ability of our system to generalise to unseen motions in a new style is primarily

determined by two factors. The most important factor is the data quantity available,

with more data less regularisation is needed as overfitting becomes harder. The sec-

ond factor is how similar a new style is to the styles used to learn the style agnostic

parameters. Without a huge number of styles the style agnostic parameters will not be
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truly agnostic but rather a useful shared representation of the content shared between

pretraining styles, so a new style that is very different from the pretraining styles may

require lower regularisation. Since this similarity between styles is hard to measure,

we run a grid search over dropout rates and select the value which gives best qualitative

performance.

3.4 Datasets, Training & Implementation

We have now outlined an approach for the few-shot learning of locomotion styles.

Before we evaluate this system we detail the technical specifics of our method. This

includes the dataset we use for learning style agnostic parameters, the dataset we use

for few-shot learning, loss functions, training procedures and implementations details.

3.4.1 Datasets

To learn shared style agnostic parameters we capture a large number of frames of

stylised locomotion and extract useful features to create neural network inputs and

outputs. For learning new styles we rely on existing datasets (Gross and Shi, 2001)

which contain many different motions, albeit with limited amounts of data.

3.4.1.1 Large Style Locomotion Dataset

To train the PFNN weights we capture a dataset containing 8 representative styles of

locomotion inspired by the styles used by Xia et al. (2015): angry, childlike, depressed,

neutral, old, proud, sexy and strutting. These styles are performed by a single actor

of height 182cm and captured at 120 fps (frames per second) using the Vicon Nexus

optical motion capture system.

Each of the 8 captured styles are globally cyclic, that is, similar poses can be aligned

using a single phase variable. We capture running and walking motions moving on

a flat plane as these are the most common motions for interactive applications. The

result is a large dataset of around 1 hour of motion capture data (Table 3.1). Note that

since there is no fixed correspondence between captures in different styles the specific

style components must be learned from this unaligned, unstructured data.
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Table 3.1: Unmirrored frame counts and number of locomotion cycles for each of the

styles in our large captured dataset.

Style No. Frames No. Cycles

Angry 11552 337
Childlike 11552 335
Depressed 11552 208
Neutral 11552 242
Old 11552 262
Proud 11552 180
Sexy 11552 252
Strutting 11552 216

3.4.1.2 Data Processing

After capturing the data we extract motion features to create data in the same format as

used by Holden et al. (2017b). The data is first mapped to the same skeletal structure

as used by Gross and Shi (2001) and Holden et al. (2017b), to enable us to learn

new styles without needing to worry about changes in character skeletons. The data is

additionally mirrored to double the number of frames available and ensure a balance of

turning directions. To make sure the dataset is balanced over all styles we use an equal

number of motion capture frames for each style (23104 after mirroring, see Table 3.1).

The motion features we extract are the 31 skeletal joint positions, velocities and rota-

tions. These are calculated for every frame relative to the character’s root joint (hips)

position, this create a local co-ordinate frame which allows us to ignore global transla-

tion. Each frame is additionally labelled with a phase value as defined in Section 3.2.1.

To do this labelling a semi-automatic process is used which extracts approximate foot

contacts with the floor plane by thresholding foot joint velocities (which are 0 when the

foot is planted on the floor). These foot contacts are manually cleaned and right foot

contacts labelled with phase 0, left foot contacts with phase π and linear interpolation

finding all other phase values. We refer to one full cycle of the phase label (a change

of 2π) as a locomotion cycle and use this as a useful indicator of the amount of data

available for a given style as the PFNN aligns motions using the phase (Table 3.1 also

shows locomotion cycles per style).

Recalling that one of the purposes of a style modelling approach is to allow a user

to control the motion content via high level input we additionally extract the same
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user controllable information as in Holden et al. (2017b). This takes the form of the

character trajectory found by projecting the root joint position onto the floor plane. For

a single frame this trajectory consists of 12 points found by sampling the projection

of the root joint every 10 frames for 60 frames in the past, the current frame, and

50 frames in the future. At each point the position and facing direction of the root

joint relative to the current root joint position and facing direction is calculated. This

trajectory representation, projected onto the floor plane, can be seen in Figure 3.4 (left)

along with the skeletal structure of the character. Technically, each frame of motion is

also given a style label although this is not used as input to the network, instead it is

used to allow us to select which residual adapter to use.

After this processing the training data consists of inputs, xi ∈ R234, and outputs, yi ∈
R400, that we aim to predict. xi is frame of motion capture data and consists of: 2×12,

x and z planar trajectory positions; 2×12, x and z planar trajectory directions; 3×31,

x, y and z joint positions, and 3× 31, x, y and z joint velocities. yi is the next frame

of motion after xi and consists of: 2× 6, x and z current and future planar trajectory

positions; 2× 6, x and z current and future planar trajectory directions; 3× 31, x, y

and z joint positions; 3×31, x, y and z joint velocities; 3×31, x, y and z joint rotation

forward components; 3×31, x, y and z joint rotation upward components; 1 predicted

change in phase, and 1×3, x and z planar root translations with y root rotation around

the vertical axis to perform a global character location update.

We standardise the data before training the neural network, importantly we standardise

jointly over all styles. This is because the mean and standard deviation of (input and

output) style specific representations captures a substantial amount of the style varia-

tion (Huang and Belongie, 2017; Li et al., 2017a), however, we wish to model the style

factors with the style specific parameters. Standardising each style individually makes

modelling the style specific variation with network parameters more difficult, so we

standardise all styles together.

3.4.1.3 Few-shot Dataset

To evaluate learning in the low data regime we extract 50 different styles of motion

from the open source CMU motion capture database (Gross and Shi, 2001). This

database has a large number of motion styles but often very limited data for individual

styles, meaning learning a controllable character that can create general locomotion in

a given style is difficult. For example, for certain styles there may only be 1 locomotion
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cycle in the database from which we aim to extract the style factors and use these

with the pretrained content (style agnostic) representation to generalise to new turning

directions and speeds. Appendix A.1 provides a table with frame counts and numbers

of locomotion cycles for each of the styles extracted.

This few-shot data is processed to create the same features described above however,

since some of the styles are asymmetric (see Appendix A.1) we do not mirror them.

Additionally, when training with this data we normalise using the same mean and

standard deviation calculated on the large, 8 style, dataset. If styles were standardised

individually this would change the relative amounts of style and content information in

the input features, and the standardisation would be limited to the specific speeds and

turning directions in the data making generalisation harder.

3.4.2 Training & Implementation

The first step to learn our style modelling system is to train the agnostic parameters βββag

using the large balanced 8 style dataset. We additionally learn 8 style specific residual

adapters setting R to be 30 in Equation 3.42. Relative to the number of style agnostic

parameters, this adds only 1.5% more parameters for each style we learn3.

For style s with input frame x(s)i , corresponding phase value p(s)i , and output frame y(s)i

(which we predict), we train the network by minimising a mean squared error loss.

This is given by

L(x(s)i ,y(s)i , p(s)i ;s) = ||y(s)i −Φ(x(s)i , p(s)i ;βββ
(s),βββag)||2 +λag||βββag||1 +λs||βββ(s)||1, (3.5)

where Φ is the PFNN using the residual adapter for style s for style modulation and a

small L1 loss is placed on the weights for (sparsity-encouraging) regularisation (Mur-

phy, 2012, Section 13.3). We set λag and all λs to 0.01.

As well as balancing the data, we encourage style invariance by balancing how styles

are learned during pretraining. We split the data into minibatches, with each minibatch

containing one style of motion. During training we cycle through the styles, meaning

every 8th minibatch contains data from the same style. Since the data is balanced we

2As with the dropout rate, R is chosen by performing a grid search over multiple values and checking

for qualitative signs of overfitting or underfitting such as those shown in Figure 3.4. Other hyperparam-

eters are similarly chosen by performing small grid searches and evaluating qualitative performance.
3If we discretise the phase saving 50 weight matrices for each phase-functioned layer, the extra

number of parameters is only 0.03% more.
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have an even number of minibatches for each style and our overall objective becomes

L(X,Y,P) =
N

∑
i=1

S

∑
s=1

L(x(s)i ,y(s)i , p(s)i ;s), (3.6)

where N is the number of frames per style, S is the number of styles, and X,Y,P are the

sets of all input frame representations, phase values and output frame representations

respectively (X =
⋃N

i=1
⋃S

s=1 x(s)i etc.).

As in Holden et al. (2017b), both hidden layers of the PFNN have size 512. We pretrain

our system for 25 epochs using Adam (Kingma and Ba, 2014) which takes approxi-

mately 6 hours on a single NVIDIA GTX 1080 Ti GPU. This number of epochs acts as

an additional early stopping regularisation as we find training for longer can produce

results overfitted to certain styles.

3.4.2.1 Few-Shot Implementation

If this training procedure learns a good set of style agnostic parameters, then we

can freeze these parameters (bottom row in Figure 3.5) and learn only new residual

adapters for new styles of motion. Given enough data, the style agnostic parameters

should learn to model general motion content, that is, ‘the things that are common to

all styles’ (content invariance assumption, Section 2.2.1). This means that for a new

style, we need only learn how to modulate these general features rather than learn-

ing everything about locomotion from scratch. Together with the decomposed residual

adapters (R = 30) and making use of variable dropout this allows us to learn with small

amounts of data.

For each style extracted from short motion capture clips from the CMU dataset we

initialise the system using the pretrained weights for the PFNN. A new residual adapter

is then learned from scratch with the PFNN weights held fixed.

3.4.2.2 Building a Real-Time Demo

To create a real-time demo we implement our neural network in a game engine (Unity,

(Haas, 2014)) and predict the pose for the next frame given the current pose and user

controlled trajectory. We blend the trajectory predicted by our model with a keyboard

controlled trajectory using the method of Zhang et al. (2018a). To increase speed

at runtime we discretise phase functioned weights in the same way as Holden et al.

(2017b), saving 50 matrices for different phase values.
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Figure 3.6: Modelling multiple styles learned from limited data. From left to right the

styles shown are: joy, on toes crouched, roadrunner, wild arms & zombie.

3.5 Evaluating the Residual Adaptation Approach

Having pretrained the model and learned new residual adapters for each of the few-

shot styles we can evaluate our approach and compare the results to other systems. As

this system is an animation system designed for real-time applications the majority of

the comparisons are based on qualitative performance. For this reason, a video demon-

strating the results discussed in this section can be found at https://www.youtube.

com/watch?v=Q-agrHm-ztU. Examples of modelling different styles are shown in

Figure 3.6 and the accompanying video.

In general the quantitative evaluation of generative models is a challenging topic (Theis

et al., 2016). Evaluations based on model error may be biased towards overfitted mod-

els and may not correlate with perceived perceptual quality (Martinez et al., 2017).

Whilst there exist quantitative evaluation techniques for very specific aspects of ani-

mation systems, such as measuring foot sliding artifacts (Zhang et al., 2018a) or com-

putational performance (Holden et al., 2020), the development of general quantitative

techniques for evaluating animation quality is a largely unexplored area in which eval-

uation metrics for different tasks may be orthogonal (Theis et al., 2016). At the time

of writing, we are not aware of any good quantitative metrics for evaluating the overall

perceptual quality of an animation system and so must primarily rely on a subjective

evaluation of animation quality.

3.5.1 Evaluating Our Model

We first consider how our approach compares to other models that we create in order

to try and learn new styles from low amounts of data. The simplest approaches of

https://www.youtube.com/watch?v=Q-agrHm-ztU
https://www.youtube.com/watch?v=Q-agrHm-ztU
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Table 3.2: Computational comparisons with changing residual adapter capacity. Full

adapters, with high capacity, are the most expensive and tend to overfit. Diagonal

adapters, with low capacity, are the cheapest but cannot model styles correctly due

to underfitting. Memory column, the storage requirements for a new residual adapter,

the two values show storing only the control points at runtime and storing 50 weight

matrices with a discretised phase respectively. Training column, the mean training time

for a new style. Runtime column, the time for a forwards pass of the network.

Method Memory (MB) Training (s) Runtime (s)

Full Adapter 4.01 / 50.1 99 0.0013
Diagonal Adapter 0.016 / 0.20 44 0.0010
CP Decomposition 0.126 / 0.131 50 0.0011

training the whole PFNN from scratch using only the data from a new style, or fine-

tuning a PFNN learned on a large dataset of locomotion, heavily overfit. This creates

unrealistic poses even for small changes in the input trajectory unseen in the training

data, see Figure 3.4.

We also compare our CP decomposition to residual adapters learned with different

capacities. In particular, we examine ‘full’ residual adapters, where we use no decom-

position, learning a 512×512 phase-functioned weight matrix for each style, and ‘di-

agonal’ residual adapters, where we restrict the weight matrix to be diagonal with 512

phase-functioned parameters. Table 3.2 shows the computational differences between

these approaches. Note that the full residual adapter, which increases the original

PFNN parameter count by 44.7% for each new style, is significantly more expensive

in terms of storage than the other approaches. This table also highlights another benefit

of learning with small amounts of data, that is, extremely fast training times (less than

a minute compared to 6 hours for pretraining).

Qualitatively we find that, whilst the full residual adapters can well model most styles

they have a tendency to overfit due to having too much capacity. This manifests as a

character which does not respond well to user control, preferring to mimic the training

data. For example, walking in a straight line when the user tries to turn left or right.

With diagonal residual adapters we found the opposite problem of insufficient capacity

to cause underfitting. This means that the system failed to learn to model styles well,

outputting some type of average motion rather than stylised poses. In contrast, we

find that using the CP decomposition to set a suitable capacity allows our model to
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Figure 3.7: Underfitting and overfitting to different styles as residual adapter capacity

changes. (a) Dinosaur style, CP decomposed residual adapter, reasonably capturing

the style. (b) Dinosaur style, diagonal residual adapter, the style is captured poorly due

to underfitting. (c) Elated style, full residual adapter, the style is well modelled but the

character struggles to turn left. (d) Elated style, CP decomposed residual adapter, the

style is still well modelled but the character can turn more easily.

generalise better. Examples of overfitting and underfitting are shown in Figure 3.7 and

the accompanying video.

To some extent we can visualise the role of the style agnostic parameters by setting the

residual adapter weights to 0. This visualisation, seen in the accompanying video, is

fairly close to a neutral walk and represents a reasonable underlying agnostic motion

for our style dataset. However, it may well be that the style agnostic parameters could

be improved upon given larger amounts of data.

We also note the importance of training on multiple styles (domains) during pretraining

(Arjovsky et al., 2019). If we train only on neutral motion the network cannot learn to

separate style and content factors in the data. If we then try to learn a new style, this

leads to difficulties with the network often outputting motions that are quite close to

the neutral data. This happens because we have no changing domains to demonstrate
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what is content (‘the things that are the same across domains’) and what is style (‘the

things that are different across domains’).

3.5.2 Comparisons with a Style Transfer Approach

We additionally compare our style modelling approach with the style transfer approach

of Holden et al. (2016). Holden et al. learn an autoencoder, to learn a manifold of

human motion, and then optimise in latent space to transfer the style of one clip onto

the content of another using a Gram matrix approach (Gatys et al., 2015). Although

not designed for style modelling, in that a user cannot interactively control the motion

content using this method, we can still compare outputs. To do this we select a content

clip in the neutral style and use Holden et al.’s method to stylise this clip using the style

from one of our clips for few-shot learning. We then take the trajectory of the stylised

motion and use this as input to our system in order that both motions may follow a

similar path.

Results of this process for the balanced, crossover, and chicken styles are shown in

the accompanying video. These results show that our method usually produces results

that are qualitatively at least as good as Holden et al.’s and often capture many more

style details. However, if data is extremely limited, optimising using the Gram matrix

can produce superior results, albeit for a single content clip without learning a general

representation of the style (as we do with our residual adapter parameters).

3.5.3 Reflections on the Residual Adaptation Approach

Our system is able to learn to model new styles of locomotion given only a few frames

of data (Appendix A.1). The majority of styles we evaluate on can be generalised

to new turning directions and realistic changes in movement speeds. However, some

styles present problems for our approach. Here we reflect on two challenges that arise

when using our system, namely generalising beyond new turning directions to new

motions (heterogeneous transfer) and modelling styles that have no clear global phase

(non periodic motions).

3.5.3.1 Heterogeneous Transfer

Our results are strongest for homogeneous style modelling. That is, given a short clip

of walking data, we can utilise the style agnostic parameters to help generalise to new
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walking directions and speeds. However, some works (Yumer and Mitra, 2016) have

shown an ability to perform heterogeneous style transfer, that is, to take the style of one

motion (e.g. walking) and map it onto the content of a different motion (e.g. jumping,

punching).

For our approach, heterogeneous transfer is difficult because, given motion capture

data of a character walking in a straight line there is no deterministic mapping that

tells us how this style manifests when running or jumping say. Learning to perform

heterogeneous style modelling in animation synthesis systems is very desirable. Whilst

we implemented a number of methods to try and achieve this including layer normali-

sation (Ba et al., 2016) and a Fourier based loss function inspired by Yumer and Mitra

(2016), we were not able to achieve consistent high quality heterogeneous transfer.

For style modelling approaches, the easiest way to achieve some type of heterogeneous

transfer would be to collect larger, more varied datasets of stylised locomotion to pre-

train on. Our 8 style dataset contains only forwards walking and running movements,

so larger datasets with more types of movements and more styles to learn how these

movements relate across styles (domains) are desirable.

3.5.3.2 Non Periodic Motions

Whilst our pretraining data contained only globally cyclic styles, several of the new

styles we try to learn do not have such a global phase cycle. Those styles which are

globally cyclic tend to be well modelled with our phase-functioned system. However,

those styles that have a poorly defined global phase, because of different limbs mov-

ing with different phases or stochasticity (e.g. wild arms or drunk.), are difficult to

reproduce with our model.

Such styles likely require architecture changes as the PFNN’s inductive bias required

highly regular periodic motion, summarisable with a single phase value. Furthermore,

our use of only cyclic motions and the PFNN to learn style agnostic parameters may

prevent the learning of truly agnostic parameters as we are restricted to using a global

phase. In the rest of this chapter we investigate potential solutions to these problems,

creating a larger, more varied, dataset and relaxing the PFNN’s strong globally cyclic

assumption.
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3.6 Harder Style Modelling - The 100Style Dataset

Having discovered some limitations of our 8 style dataset from this initial exploration

of few-shot style learning, we iterate on this dataset to create a range of styles that

are intentionally difficult for style modelling as well as collecting much more data.

The dataset we create contains over 4 million frames of locomotion in 100 different

styles. We call this dataset 100STYLE and provide a video of the styles captured:

https://youtu.be/ZPj_7Ewe3eU.

3.6.1 The 100Style Dataset

Along with our 8 style dataset, several other datasets have been released for animation

research. However, these datasets tend to either contain a large number of motion cap-

ture frames for a small number of styles (as in our dataset, Ionescu et al. (2014), and

Xia et al. (2015)), or a large number of styles with a small number of frames per styles

(as in Gross and Shi (2001)). It is this lack of available data which led us to focus on

few-shot learning with the PFNN. Other authors have developed augmentation tech-

niques (Lee et al., 2018), methods that utilise 2D video data (Aberman et al., 2020),

and hand crafted solutions (Yumer and Mitra, 2016) for the same reasons. This lack of

data also restricts the evaluation of style transfer and modelling systems, often to small

numbers of globally cyclic styles (Holden et al., 2017a; Smith et al., 2019). To address

these issues we create the 100STYLE dataset which contains more styles of locomotion

than previous datasets with many more motion capture frames for each style.

The 100 styles we capture are designed to provide a range of challenges for style trans-

fer and modelling systems. In particular we intentionally capture styles that contain

stochastic movements, are asymmetric, and have no clear global phase cycle. Fig-

ure 3.8 shows examples of some of the styles captured in 100STYLE. Appendix A.2

gives a full list of styles and the number of frames of motion capture per style.

This dataset is captured using Xsens motion capture technology which captures joint

positions and rotations for a 28 bone skeleton. Multiple gaits of motion are captured

according to predetermined scripts, the scripts are given in Appendix A.2 and a break-

down of the dataset by number of frames captured per gait is shown in Table 3.3. The

data is captured at 60fps with a single actor, 182cm tall, in a 4.5m × 4.5m capture

area. The final dataset contains approximately 19 hours of motion capture data.

https://youtu.be/ZPj_7Ewe3eU
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Figure 3.8: Examples of styles in the 100STYLE dataset. From left to right: Star -

Backwards Walk; Drunk - Forwards Walk; Drag Right Leg - Forwards Walk; Roadrunner

- Forwards Run; Kick - Backwards Walk, and Wild Arms - Sidestep Run. The Drunk

style is stochastic, Drag Right Leg is asymmetric and Wild Arms has joints moving with

different phase cycles (no global phase cycle).

Table 3.3: The 100STYLE dataset broken down by frames captured per gait.

Motion Gait Frames Time(m) Ratio(%)

Backwards Run 434,329 120 10.7
Backwards Walk 768,574 213 19.0
Forwards Run 414,911 115 10.2
Forwards Walk 777,640 216 19.2
Sidestep Run 250,980 70 6.2
Sidestep Walk 541,041 150 13.3
Idling 81,685 23 2.0
Transitions 786,818 218 19.4

Total 4,055,978 1125 100.0

3.6.2 Data Processing

The data captured is processed in much the same way as in Section 3.4.1, with symmet-

ric styles being mirrored and extracting input frame and output frame representations.

We also extract short clips of stylised data.

Given this improved dataset, we do however make some improvements and changes

to the data processing pipeline. Namely: we use a 25 bone skeleton instead of a 31

bone skeleton (discarding unneeded head top and toe joints from the motion capture);

we extract foot contact predictions in the output; we add rotations to the input frame

(as Zhang et al. (2018a) find it useful for gated expert systems), and we extract local

phase variables as will be explained in Section 3.7. The upshot of this new processing

is that we extract input frames, xi ∈R348, output frames, zi ∈R342 and clips of stylised
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motion, y ∈ R240×300.

The input frame, xi ∈ R348, consists of: 2× 12, x and z planar trajectory positions;

2×12, x and z planar trajectory directions; 3×25, x, y and z joint positions; 3×25, x,

y and z joint velocities; 3× 25, x, y and z joint rotation forward components; 3× 25,

x, y and z joint rotation upward components. All relevant values are calculated in the

character’s local co-ordinate frame. 8 local phase variables are also extracted from

each input frame (see Section 3.7).

The output frame, zi ∈ R342, consists of: 2× 6, x and z current and future planar

trajectory positions; 2×6, x and z current and future planar trajectory directions; 3×
25, x, y and z joint positions; 3×25, x, y and z joint velocities; 3×25, x, y and z joint

rotation forward components; 3× 25, x, y and z joint rotation upward components; 8

predicted local phases; 8 predicted local phase updates, and 2 approximate foot contact

labels. The output frame is calculated in the input frame’s local co-ordinate frame, this

allows us to implicitly model the global character translation.

The stylised clip, of motion y ∈ R240×300, consists of: 3× 25, x, y and z joint po-

sitions; 3× 25, x, y and z joint velocities; 3× 25, x, y and z joint rotation forward

components, and 3× 25, x, y and z joint rotation upward components calculated in

the local co-ordinate frame for 240 consecutive frames. We do not add the trajectory

to the style clips as we are not interested in the specific motion in the clips, only the

spatio-temporal joint relationships.

3.7 Improved Animation Synthesis with Local Motion

Phases

With this new large dataset we now ask how can we improve the quality of style mod-

elling systems. In particular, we no longer focus on the low data regime, instead fo-

cusing on engineering and design decisions to better allow neural networks to model

multiple styles of locomotion. We will first consider the animation synthesis network,

in particular changing the PFNN architecture to better accommodate motions that are

not globally cyclic. Afterwards we will look at learning a style representation from the

clips of motion capture data we extract from the 100STYLE dataset.

To improve animation synthesis we take inspiration from works created during the

development of this thesis that use gated experts systems to capture local movements
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Figure 3.9: A Gated Experts System. As with the PFNN, weights used for prediction

are set by blending parameters. Rather than being manually defined, the blending is

learned dependent on some local signal.

in locomotion (Starke et al. (2019, 2020); Zhang et al. (2018a), Figure 3.9). A gated

expert system consists of 2 sub-networks, firstly a gating network, ΩΩΩ, that uses some

local signal to predict blending coefficients {αi}K
i=1. These coefficients are used to

linearly blend expert weights, {Wi}K
i=1, (analogous to control points in the PFNN,

these expert weights are possible settings of a neural network’s parameters). This idea

was originally developed in order to learn, rather than define manually, the blending of

control points used in the PFNN in Equation 3.1 (Zhang et al., 2018a). Once blended,

the output weights, W = ∑i αiWi, form the weights of a motion synthesis network, ΦΦΦ,

which is used to predict the next frame from the input frame.

3.7.1 A Hybrid Approach to Local Phases

Recently Starke et al. (2020) have proposed to use a local phase as input to the gating

network of a gated experts system. The local phase aims to capture the phase cycles of

individually specified joints, rather than one global phase value, and use these signals

to condition how to blend expert weights. Since several of the styles in the 100STYLE

dataset are not globally cyclic and have joints moving with different phase cycles we

repurpose this approach to model locomotion styles. We call a gated experts system

that uses local phases for gating a Local Phase Network (LPN).

However, the local phases used by Starke et al. are created using contacts of specific

joints with the environment (the floor plane, objects, etc.). With stylised motion we do
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not always have contacts with the environment, for example the arms may move freely

without interacting with anything in the scene. Therefore we must additionally extend

the local phase creation to the contact-free setting.

Our approach to creating local phases is to use the method of Starke et al. when con-

tacts are available and to use our own contact-free method when they are not. To create

local phases, we fit a sinusoidal function to some function of the joint we are interested

in. We refer to the function we fit as a source function, G(t) (Starke et al., 2020, Sec-

tion 5.2). This fitting process is able to flexibly fit many functions, so in order to fit

local phases we must simply design a reasonable source function.

3.7.2 Contact-Based Local Phases

Our contact-based source function is a step function defined by the presence of contacts

(or lack thereof) with the floor plane. We extract approximate foot contact labels, for

a given foot, by thresholding the foot bone velocities and distance from the ground. If

both the ball centred at the end of the foot with radius dmax intersects the ground plane

and the foot velocity vmax is below some threshold we label the frame with a contact

(1) and if not with no contact (0). This creates the step function which aims to be 1

when the foot in question is touching the ground and 0 otherwise. dmax and vmax can be

adjusted for different styles but we use default values of dmax = 0.01 and vmax = 0.15.

3.7.3 Contact-Free Local Phases

For the case where contacts are not available for a given bone, we aim to design a

source function that cycles with the bone’s movements. To do this, we separate the

motion capture clips for a given style into the different gaits shown in Table 3.3. For

a given style with a given gait we use PCA to calculate the 3 principal components of

the bone’s position, in the local co-ordinate frame, over the motion clip. Before fitting

PCA we standardise by the mean position but not by the variance. This is because we

do not care about the bone’s average location relative to the root, but the variance in

the bone’s location is precisely what we aim to capture with our source function.

The source function is then created by projecting the (centred) bone’s position onto the

first principal component. Note that we must also direct this principal component. This

is because if we calculate local phase cycles for two bones moving either in sync or out

of sync by half a phase cycle, if the principal component is not directed there is no way
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to tell the difference between these situations. To direct the principal component we

check if it is positive along the character’s forwards facing axis and flip the direction if

not.

The resultant source function is approximately sinusoidal for locally cyclic movement

and is large in absolute value when the bone is far away from its mean position along

a specific axis (the first principal component). This can be seen in the top row of

Figure 3.10, where the uppermost 1D source function (white curve) is sinusoidal in

shape.

3.7.4 Processing Source Functions and Calculating Local Phases

The source functions described above for contact-based and contact-free situations

are post-processed before local phase values are calculated for each frame. We use

the same post-processing as Starke et al. (2020), normalising the function over a one

second window and applying a Butterworth filter to the source functions. The fil-

ter smooths the steps in the contact-based situation and filters out some noise in the

contact-free case.

The evolutionary fitting process of Starke et al. fits a function of the form ai · sin( fi ·
t− si)+bi, where i is the frame index, t the timestamp input to source function G(t),

and {ai, fi,si,bi} parameters optimised during fitting. Phase values, for frame i with

timestamp t, are then extracted from this fitted function as φi = fi · t− si (mod 2π). We

then extract a 2D phase representation,

p(b)
i = ||vw|| · ai ·

(
sinφi

cosφi

)
, (3.7)

where p(b)
i is a 2D phase vector for frame i and bone b. ||vw|| is the maximum bone

velocity over a one second window, w, centred on frame i. Scaling by this velocity

significantly reduces the phase magnitude when bones are stationary and the local

phase is not clearly defined.

We choose to extract local phases for the end effector bones, that is, the hands and the

feet. We use the contact-based method whenever contacts are available (most of the

time for the feet) and the contact-free method when contacts are unavailable (all of

the time for the hands). Figure 3.10 shows examples of the local phase extraction for

three different styles. In this figure we show the directed first principal components

with magenta arrows and planes perpendicular to the arrows, centred at the mean of
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the bone in question. Intuitively the local phase function is positive when the bone is

in front of the plane and negative when it is behind it.

3.8 Style Modulation with Feature-Wise Linear Modula-

tion

Given that we are now working with larger amounts of data we can also reconsider

how style is modelled in our system. In particular, we investigate the use of FiLM

parameters (feature-wise linear modulation, Perez et al. (2018)) for learning a compact

representation of locomotion style. We learn our style modulation network, ΨΨΨ, as a

FiLM generator which outputs the FiLM parameters given an input clip of stylised

locomotion. The FiLM parameters modulate the hidden units of the motion synthesis

network, ΦΦΦ (the network with blended expert weights).

In the broader context of this thesis, the motion synthesis network has parameters

shared across all styles and should capture the content factors in the data. The style

modulation network should capture the style factors present in a given input clip of

stylised motion, y. By changing only the style factors, that is changing the input clip

of stylised motion, we can change the style of generated motions without changing the

content.

3.8.1 Style Modulation Network

FiLM parameters (Perez et al., 2018) are learned, element-wise, scale and shift pa-

rameters that are applied to the hidden unit of a neural network. The FiLM generator

outputs FiLM parameters for each of the two hidden layer of the motion synthesis

network,

ΨΨΨ(y) =
{

γγγ
(1),βββ(1),γγγ(2),βββ(2)

}
, (3.8)

where γγγ(i) and βββ
(i) are the scale and shift vectors of FiLM parameters for layer i.

Similar to Aberman et al. (2020), we additionally apply layer normalisation (Ba et al.,

2016) to the hidden representations before applying the affine FiLM transformation.

This creates a form of conditional normalisation (Dumoulin et al., 2017). We can

summarise the application of this conditional normalisation, for a single frame x j with
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Figure 3.10: Local Phase Labelling. Top to bottom the styles are: Pendulum Hands

(contact-free and contact-based local phases create clear cycles); Hands In Pockets

(the phase has a negligible magnitude for the hands due to low bone velocity), and Left

Hopping (we can use the contact-free method for feet if contacts are not available). In

this figure the white curves show the source functions over many frames. From top to

bottom the source functions are for the right hand, left hand, right foot and left foot. The

blue bars show the extracted local phases with transparency representing the phase

magnitude, ||vw|| ·ai. More transparency corresponds with lower magnitude. The green

bars show foot contact detections. The frames visualised on the left correspond to the

locations of the vertical yellow bar in the source functions and foot contacts.
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index j, as

h(i)
j = ELU

γγγ
(i) ◦

FFF(i)
j −µµµ j

σσσ j

+βββ
(i)

 , (3.9)

where, for sample j, FFF(i)
j is the output features of layer i in motion synthesis network,

ΦΦΦ, and h(i)
j is the input to layer i+1. ELU is the exponential linear unit; γγγ(i) & βββ

(i) are

as described in Equation 3.8, and µµµ j & σσσ j are the layer normalisation statistics, that is,

the mean and standard deviation taken over FFF(i)
j . ◦ is the element-wise product.

3.8.2 Theoretical Analysis

Like the residual adaptation approach, FiLM parameters also modulate the learned

hidden representations of an input frame4. In fact, a one-hot labelling of style (Holden

et al., 2017b; Smith et al., 2019) effectively learns a bias term that can be viewed as a

style specific learned offset applied to the first layer’s hidden units. As discussed in the

related work (Section 3.1), applying affine transformations to hidden representations

is a relatively common approach for style transfer and modelling. What we note here

is that these affine transformations can be viewed as a special case of the Multi-Task

Dynamical Systems (MTDS) framework (Bird and Williams, 2019).

MTDS is a principled probabilistic framework for customising time series models to

individualised sequences (or, in the language of this thesis, adapting a time series

model to a new domain). For locomotion style, this results in modelling styles us-

ing whole layers of neural network weights (Bird, 2020, Figure 5.5). In our case, the

affine transformations of hidden units discussed above can be seen as specific restricted

ways in which layers of neural network weights can be modified.

To see why this is the case we write a feed-forward layer as hhh(i+1) = σ(WWWhhh(i)+ bbb),

where hhh(i) is the hidden units for layer i, WWW & bbb the layer parameters and σ some non-

linearity. We then write the element-wise scaling FiLM parameters, γγγ(i), as a diagonal

matrix, WWW s, with the scaling parameters on the diagonal. Keeping the shift parameters

as vector βββ
(i), we write a layer modulated by FiLM parameters as

hhh(i+1) = σ

(
WWW s(WWWhhh(i)+bbb)+βββ

s
)
= σ

(
WWW ′hhh(i)+bbb′

)
, (3.10)

where WWW ′ = WWW sWWW and bbb′ = WWW sbbb+βββ
s are the new layer parameters. Similar analysis

can be easily performed for one-hot vector and residual adapter modulation. This

4Residual adapters add an offset to the hidden units which changes as the network input changes.
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(a) Before Fine-Tuning (b) After Fine-Tuning

Figure 3.11: t-SNE for FiLM parameters. We show embedding for 50 different stylised

motion clips for 15 style that the FiLM generator is pretrained on (pastel colours). We

also show 50 embeddings for 3 styles unseen during pretraining (black circles, blue

squares, red triangles). (a) Before fine-tuning the style the FiLM generator is trained on

are well separated but the unseen styles are not. (b) After fine-tuning all styles are well

separated.

shows how MTDS and affine transformations of hidden units relate, in particular the

transformations of units we perform are a specific manipulation of layer parameters as

done more generally by Bird (2020).

We point out however, that despite the generality of learning style specific layers, this

process is very expensive as it requires capturing style variation with whole layers

of neural network parameters5. Our methods, which share style agnostic parameters

across styles, allow us to learn much more compact representation of styles which

are both cheaper to store and faster to calculate with. We also posit that, by forcing

our model to learn to represent styles as an affine transformation of the hidden units,

this encourages linear interpretability of the learned style manifold and hence more

plausible linear interpolations between styles.
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3.8.3 Learning New Styles

Whilst the 100STYLE dataset contains a large amount of variation in human locomo-

tion, we do not have a dense enough sampling to expect to achieve generalised learn-

ing of FiLM parameters for unseen styles as we effectively have 100 samples from the

‘style space of human locomotion’ (Ji et al., 2021). However, we would still like to be

able to model new styles of locomotion given new data.

Much like with the PFNN, we can view the parameters of the LPN as the style agnostic

parameters and the FiLM parameters as the style specific parameters. Whilst the FiLM

generator can have arbitrary capacity, the FiLM parameters themselves have size equal

to the number of hidden units in the layer they transform. In particular, after training

the FiLM generator, FiLM parameters can be calculated and saved offline for use with

the LPN. This means we can approximately reconstruct our 100STYLE training data

with 100 such sets of FiLM parameters and the LPN parameters. Therefore, given

some new stylised locomotion data, we simply need to learn a reasonable set of FiLM

parameters that can be used with the trained LPN parameters. To do this we can simply

fine-tune the FiLM generator on the new style data while holding LPN parameters

fixed.

Figure 3.11 visualises this argument using a t-SNE visualisation (Van der Maaten and

Hinton, 2008). Figure 3.11a shows that, given new styles of locomotion the FiLM

parameters extracted (without fine-tuning) are not well separated by style, that is, the

FiLM generator does not provide robust style generalisation. Figure 3.11b shows that,

by holding LPN parameters fixed and fine-tuning the FiLM generator, we are able to

extract well separated FiLM parameters for new styles using this fine-tuning approach.

3.9 A Complete System for Style Modelling in Human

Locomotion

We combine our improved, local phase based, animation synthesis network with FiLM

style modelling to create a single architecture for modelling the 100STYLE dataset.

This architecture can be trained end to end and is shown in Figure 3.12 where W(l)

denotes the lth layer of the motion synthesis network. In this figure the dashed red

5This would amount to 512× 327× 4 ≈ 670,000 parameters for each style if we learned the last

layer of a PFNN to be style specific.
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Figure 3.12: 100STYLE Style Modelling System. Animation synthesis (peach) is per-

formed using a local phase network that uses a gating network to blend expert weights

to create the parameters of a motion synthesis network. Style modulation (green) is

done using FiLM parameters which modulate the hidden units of the motion synthesis

network. LN is layer normalisation (Ba et al., 2016).

box represent the calculation of the FiLM parameters (Equation 3.8), it is this network

that is fine-tuned to learn new styles. The green boxes represent applying the FiLM

parameters to the motion synthesis network as in Equation 3.9.

3.9.1 Training & Implementation

We predict output frame zs
j from input frame xs

j for style s as

ẑs
j = ΦΦΦ

(
xs

j;ΩΩΩ(p(1)
j ,p(2)

j ,p(3)
j ,p(4)

j ),ΨΨΨ(ys)
)
, (3.11)

where ẑs
j is the predicted output frame, ΦΦΦ is the motion synthesis network whose pa-

rameters are created using the output of the gating network, ΩΩΩ. p(i)
j are the phase

vectors for the 4 end effectors calculated with Equation 3.7. The hidden units of the

motion synthesis network are transformed using the output of the FiLM generator, ΨΨΨ,

calculated using stylised clip of motion in style s, ys.

The motion synthesis network, ΦΦΦ, is a 3 layer feed-forward neural network with both

hidden layers being of size 512. Gating network, ΩΩΩ, is also feed-forward and 3 layers

with both hidden layers of size 32, the output is of size 8 for the 8 sets of expert weights

we blend. The FiLM generator, ΨΨΨ, uses 1D convolutional layers with 256 filters that
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convolve over the time dimension of the motion clip with a window size of 25. 2 such

layers are used with max-pooling after convolutions, 2 fully connected layers follow

with hidden units of size 2048 and 2048 output units (512 element-wise scale and shift

parameters for the 2 motion synthesis network hidden layers).

Before training the data is standardised using mean and variance values calculated over

all training styles. We train using 95 of the styles in the 100STYLE dataset, with the 5

held out styles usable for evaluating fine-tuning (Section 3.8.3). To train we optimise

the mean squared error objective, Lmse, between actual and predicted output frame. We

additionally find a bone length loss, Lbll , useful to prevent bone stretching artifacts.

We regularise training with a dropout rate of 0.3 everywhere Srivastava et al. (2014).

Our overall objective function is L = Lmse +Lbll ,

Lmse =
S

∑
s=1

1
Ns

Ns

∑
j=1

(zs
j− ẑs

j)
2, (3.12)

lbll(z, ẑ) =
1
B

B

∑
b=1

∣∣||zbp− zb||2−||ẑbp− ẑb||2
∣∣ , (3.13)

Lbll =
S

∑
s=1

1
Ns

Ns

∑
j=1

lbll(zs
j, ẑ

s
j). (3.14)

Here s is a style label, s ∈ {1, . . . ,S}, and Ns is the number of training data frames for

style s. zb is the 3D position vector for bone b in ground truth output frame z. zbp is the

position vector for the parent joint of bone b. ẑb & ẑbp are the same joint positions but

for the predicted output frame ẑ. B is the number of bones in the character skeleton.

We hold out 10% of the data for quantitative test set evaluations and 10% for a val-

idation set. The remaining data is used to train the network (Figure 3.12). We use

minibatch training with each minibatch containing data from a single style and to en-

sure balanced training we again cycle through the training styles so every Sth minibatch

contains the same style of motion. We define one epoch as one pass through the style

data with the smallest number of motion capture frames and train for 90 epochs using

Adam (Kingma and Ba, 2014) with a learning rate of 1×10−4.

3.9.2 Improving the Real-Time Demo

As for the residual adaptation approach we create a real-time user-controllable demo

where animation frames are predicted using our style modelling system. As our net-

work predicts foot contacts we additionally add foot contact inverse kinematics to the
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demo. This means that when a foot contact is predicted we lock the foot in place on

the floor to reduce foot sliding artifacts. We also skin the character using the Mix-

amo (Adobe, 2015) Y bot skin. Finally, we note some small skinning artifacts in the

demo so apply inverse kinematics along each arm to move arm joints to the predicted

positions which helps prevent incorrect rotations.

As discussed, we can precalculate FiLM parameters offline to increase speed at run-

time, and to reduce storage costs as we do not need to store the FiLM generator. We

can save a single set of FiLM parameters for each style either using a single clip of

data or averaging over multiple clips. To experiment with how well our model is able

to interpolate between styles we add a 3-way interpolation system that blends FiLM

parameters based on the barycentric co-ordinates at a triangle location selected by the

user.

3.10 Evaluating the Local Phase Based Style Modelling

System

With our new system for style modelling, we qualitatively evaluate by demonstrating

failure cases of other systems that we are able resolve. As we have a large number of

styles to work with we can evaluate the style modelling capacity of different systems

and highlight specific styles that prove challenging to model. We again provide a video

of animation results: https://youtu.be/mnlnG8d5PM8.

We compare several different models. PFNN One-hot (Holden et al., 2017b) uses a

one-hot vector with the PFNN to model styles. PFNN Resad is our residual adaptation

approach seen in Figure 3.5. We also combine our FiLM style modulation method

with different animations synthesis networks, specifically the PFNN (PFNN FiLM), the

MANN of Zhang et al. (2018a) (MANN FiLM), and the LPN (LPN FiLM - our system

in Figure 3.12). We additionally combine the alternative style modulation approaches

with our LPN network for comparison, creating LPN One-hot and LPN Resad.

3.10.1 Reducing Failure Cases

We first compare the qualitative results of different systems, demonstrating scenarios

that are challenging for different approaches. Each of the comparisons can be seen in

the accompanying video at full and half speed.

https://youtu.be/mnlnG8d5PM8
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3.10.1.1 Motions Without a Global Phase

Figure 3.13: No Global Phase. Style: Pendulum Hands. Left to Right: Data, PFNN

FiLM, LPN FiLM. The hands do not swing as they should using the PFNN.

Styles without a single global phase cannot easily be modelled with the PFNN as the

inductive bias creates phase specific behaviour. Figure 3.13 demonstrates an example

for a style where the hands move with a different phase cycle than the feet. Using the

same style modulation technique (FiLM), with the PFNN the model does not capture

all the style details with the hands performing a ‘stuck’ or ‘average’ motion whereas

the LPN is able to well model the local movements in the style.

Contact-Free Modelling. We can also use our contact-free local phase extraction

to generate local phases for foot bones when contacts are not available. Figure 3.14

shows our LPN FiLM model performing a hopping motion. This flexibility regarding

available contact information, as well as the difficulty the PFNN has modelling styles

with no coherent global phase, emphasises the importance of using a more flexible

architecture for stylised locomotion synthesis (in our case the LPN).

Figure 3.14: Contact-Free Modelling. Style: Left Hop. Left: Data. Right: LPN FiLM.
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3.10.1.2 Dealing With Large Numbers of Styles

Figure 3.15: Capacity Challenges. Style: Arms Above Head. Left to Right: Data,

LPN One-hot, LPN Resad, LPN Film. Lower capacity style modulation approaches can

create artifacts as highlighted in the clavicle bones.

The large number of styles in the 100STYLE dataset allows us to test the limits of model

capacity as the number of styles increases. In particular, we find that when trained on

95 styles both one-hot and residual adaptation methods display some unnatural artifacts

for certain styles (Figure 3.15). Note that by capacity we refer to the ability of the style

specific parameters to modulate the motion synthesis network. That is, both the LPN

one-hot and LPN Resad models add one shift vector to one layer of hidden units wheres

LPN FiLM both scales and shifts all hidden units. For LPN one-hot specifically, this

problem can also be seen in the fact that styles are sometimes mixed up or incorrectly

modelled (see video).

Interpolation Differences. We also evaluate the effect of different methods on the

ability to generate interpolations or transitions between styles. Figure 3.16 shows that

for LPN one-hot interpolation is not smooth, instead the style only changes when the

interpolation is completed. In contrast LPN FiLM learns a continuous interpretable

style space where linear interpolation create smooth transitions. The presence of arti-

facts when using different style modulation approaches as well as better interpolation

behaviour demonstrate the efficacy of modelling style with FiLM parameters.

3.10.1.3 No Explicit Phase Features

Our final comparison is to the MANN of Zhang et al. (2018a) where a gated experts

system is used but the gating is based on end effector bone velocities. As shown in

Figure 3.17, like with the PFNN, this method can struggle when the upper limbs move

with a clear phase cycle that is different from the lower limbs. We attribute this to the
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Figure 3.16: Interpolation. Style: Bent Forward to Lean Back. Left: LPN One-hot.

Right: LPN FiLM. The one-hot method does not create a smoothly changing transition.

Figure 3.17: No Phase Features. Style: Swimming. Left to Right: Data, MANN FiLM,

LPN FiLM. The arms do not move in a cycle when using the MANN.

fact that the MANN does not extract explicit phase features, instead having to learn the

different cycles implicitly from the velocities. The differences between MANN FiLM

and LPN FiLM demonstrate the efficacy of explicitly extracting local phase features.

3.10.2 Numerical Comparisons

Whilst qualitative performance is by far the most important factor for animation sys-

tems we are able to gain some insights from quantitative analysis.

3.10.2.1 Computational Costs

Our first numerical comparison is in terms of computational cost. Table 3.4 shows

parameter counts for the different models we compare as well as the runtime perfor-

mance. We first note that, whilst all systems can run comfortably at 60 fps, the PFNN

is substantially faster than the gated expert systems. This is not surprising as the PFNN

has fewer parameters to blend (4 control points vs. 8 experts). What’s more Holden
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Table 3.4: Storage and Runtime Comparisons. A.S.N. is the parameter count for the

animation synthesis network, S.M.N. is the parameter count for the style modulation

network, and P.S.R. is the parameters required per style at runtime. Runtime (ms)

shows the average time (with one standard deviation) to predict a single frame.

Model A.S.N. S.M.N. P.S.R. Runtime (ms)

PFNN One-hot 2,436,380 194,560 2048 0.78±0.01
LPN One-hot 4,935,928 389,120 4096 4.11±0.02
PFNN Resad 2,436,380 2,978,440 31,352 0.92±0.01
LPN Resad 4,935,928 24,952,320 262,656 4.78±0.06
PFNN FiLM 2,436,380 35,668,530 2048 1.37±0.02
MANN FiLM 4,870,392 35,668,530 2048 4.48±0.04
LPN FiLM 4,935,928 35,668,530 2048 4.53±0.04

et al. (2017b) provide a runtime optimisation for the PFNN (trading off storage for

speed by saving 50 weight matrices that discretise the phase) that cannot easily be

extend for systems with multiple phases. So, whilst there are serious qualitative chal-

lenges with the PFNN, is performance is critical and we only need to model a number

of styles this architecture may be preferable.

Probably the most interesting column in Table 3.4 is the P.S.R. column. This shows the

number of additional parameters that need to be saved in order to model one new style.

We note first that our residual adaptation approach loses out. All residual adapter

parameters must be saved because the input to the residual adapter (and hence the

output style modulation) will change during runtime. On the other hand we see that

both FiLM and one-hot methods are significantly cheaper. What is important to realise

here is that FiLM is able to achieve much higher quality results with the same number

of parameters. This demonstrates that how the parameters are learned (i.e. learning an

interpolatable style space) and how the parameters are used to modulate the network

(i.e. scale and shift all layers) are more important design choices than simply how many

parameters to use.

3.10.2.2 Test Error

We also use our held out test set to compare the test error on unseen frames of motion,

visualised in Figure 3.18. Our main analysis of these results is that, like Martinez

et al. (2017), we find the quantitative test error does not necessarily align with the

qualitative performance. As Martinez et al. (2017) showed, a low mean squared error
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Figure 3.18: Test Error. We compare the error of different models on a held out test

set. Each bar is divided into the blue mean squared error (MSE) and the orange bone

length loss (BLL).

can be achieved by outputting an average pose (as opposed to say capturing all motion

details but with poses being out of sync with the ground truth predictions).

Whilst we must not over-interpret Figure 3.18, there are still some interesting patterns

to highlight. Firstly we note that the systems that use FiLM to model style achieve

the lowest errors, this aligns with our observation that FiLM has much higher capacity

for changing the hidden representations of an animation synthesis network. Also, the

difference between PFNN Resad and LPN Resad suggests that the CP decomposition

we perform when using the residual adapter with the PFNN provides more benefits

than just a controllable number of parameters6. As seen from the qualitative results,

the LPN really only improves over the MANN for the few styles when upper and

lower body move with different phase cycles. Whilst the MANN may have better

quantitative performance on periodic motions (the majority of the data), the LPN and

MANN are qualitatively similar for such motions. Together, these points underline that

the inductive biases used to select how to model style and content are more important

than raw network capacity and that qualitative evaluation is key for model selection (at

least when using the datasets available).

6We do not perform such a decomposition when using the LPN as we do not have a single phase

variable to decompose over.
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3.11 Discussions

In this chapter we have investigated the modelling of human locomotion style and

explored methods for the low data regime alongside designing improved architectures

when sufficient data is available. Regardless of the architecture and approach there are

some areas that remain open challenges or directions for potential improvements.

3.11.1 What is Style Anyway?

Throughout this chapter we have defined style using the data generating assumptions

of Figure 3.1a. That is, making a content invariance assumption to define content as

‘the things that are the same over the styles in the data’ and style as ‘everything else

that differs’. Whilst this is a principled approach that allows us to design systems

that make use of large datasets, motion style is, at its core, a creative concept. For

example our dataset contains styles such as Left Hop and Spin Clockwise, and one can

reasonably ask if these are styles of motion or if they are actions that can be performed

in any style? We could then expand this argument further, thinking about the less clear

Chicken style similarly. If this is a young person doing a chicken impression it may

look very different to the impression performed by an older person, in fact each person

would probably do it differently. How well can this type of style be predicted without

specific stylised data for each individual? All that is to emphasise that ‘style’ is a

subjective and creative concept and we hope that our data and model will be useful for

improving the design of creative systems.

3.11.2 Future Improvements

In designing our local phase approach we saw how the extraction of local phases is

fundamentally a question of source function design. We designed a source function

that made sense for our stylised data and was easy to compute. However, for different

datasets, or different challenges we may wish to extract local phases from new source

functions. As an example, our source function will not handle randomness well as it

is designed for joints moving with a deterministic phase cycle. Extracting information

that can be used to well model different types of movements through designing new

source functions may allow us to achieve similar performance improvements in other

animation tasks.

Additionally, all of our data and systems herein have been designed for kinematic
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(non physics based) systems. This allows for artistic and creative freedom as well as

avoiding costly physics simulation. However, our models are quite capable of pro-

ducing physically implausible motions, for example when interpolating between styles

the arms may clip through the torso. It seems highly likely that any general model

of human motion will need to make use of some type of physics understanding as

this is a fundamental constraint on realistic motion capture data. Creating systems

that learn world models (Ha and Schmidhuber, 2018) that take physics into account

(Fussell et al., 2021); that combine kinematic approaches with physical simulation to

prevent self-collisions and enforce physically plausible motions; or that use some other

method for combining physics-based and kinematic approaches, will be necessary to

create characters capable of modelling the full general range of constrained human

motions.

3.12 Summary

We began this chapter by distinguishing style modelling and style transfer methods

that make use of stylised humanoid locomotion data. Initially, motivated by a lack of

available data we designed a system that modelled style using residual adapters whose

capacity could be varied depending on style complexity and data available. We took

the lessons learned from analysing this approach, along with modern developments

(Perez et al., 2018; Starke et al., 2020), to improve general style modelling systems.

We designed a new dataset for style modelling and used this to evaluate an improved

style modelling system created via feature engineering, animation synthesis network

design and the learning of compact but powerful style representations.

By exploring neural animation synthesis, we have been looking at practical applica-

tions of systems that can handle changing domains. In the remainder of this thesis we

turn to more general adaptation approaches. Rather than being designed for specific

applications, these approaches attempt to understand how domain changes manifest in

neural networks and how we might go about resolving some of the challenges caused

by changing domains, particularly under the restriction of limited data.
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Domain Adaptation
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(a) Domain Shift. We may

not have access to label Y .

(b) Feature Restoration Intuition. Aligning activation distribu-

tions restores semantic meaning and hence classifier perfor-

mance.

Figure 4.1: The feature restoration approach to resolving domain shift. (a) Data gener-

ating assumptions for source-free domain adaptation. (b) Aligning unit activation distri-

butions to restore semantic meaning to features.

So far we have been looking at the importance of developing techniques for rapid

and few-shot learning for creative applications. However, few-shot learning remains

a general challenge for modern machine learning systems (Wang et al., 2020). In the

remainder of this thesis we will explore the more general domain shift scenario with

controlled experimentation on specific datasets.

In particular, whereas in Chapter 3 we considered mainly transfer learning approaches

for adaptation in generative models, in this chapter we return to the discriminative

task. That is, we wish to continue to classify data well after a change of domain (Fig-

56
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ure 4.1a). It is also important to restate that very often it may be that data in a new

domain is unlabelled, for example perhaps a model has been trained on expensively

annotated data and then deployed in the real world whereupon some change in con-

ditions (E in Figure 4.1a) causes a degradation in performance. In such a situation

relabelling new data may be prohibitively costly or time consuming but we still wish

to be able to adapt our model to the new domain (without labels, dashed arrow in Fig-

ure 4.1a). This is the task of unsupervised domain adaptation (UDA) which has been

well studied.

A further important restriction is that when a model is deployed we may lose access

to the data on which the model was trained (source data). This may occur for example

because of privacy regulations or storage constraints on mobile devices. Once again,

we still wish to be able to adapt a model to changing domains in this situation. This is

the task of source-free domain adaptation (SFDA), (Liang et al., 2020).

This chapter both presents a model-based method for unsupervised source-free do-

main adaptation and discusses situations in which we can expect it to work well (mea-

surement shifts) particularly within the context of other confidence maximising SFDA

methods (Lee et al., 2013; Liang et al., 2020).

4.1 Related Work

As discussed in Section 2.1.2, given labelled data in a new domain we can simply fine-

tune a source domain model (Girshick et al., 2014). However, in the more challenging

scenario where such labelled data we must attempt unsupervised domain adaptation or

even source-free domain adaptation if the source data is unavailable.

4.1.1 Unsupervised Domain Adaptation

Ben-David et al.’s theoretical work (Ben-David et al., 2007, 2010a,b) created bounds

on performance in a target domain using the source domain error, the variational dis-

tance between source and target distributions and a third term which is assumed to be

small. Ben-David et al. additionally showed that learning features from which a low

capacity classifier cannot tell the difference between source and target domains can

reduce the variational distance term.

Inspired by these results, many model-free UDA methods have been proposed which
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attempt to match source and target feature distributions (Ganin and Lempitsky, 2015;

Long et al., 2015; Ganin et al., 2016; Tzeng et al., 2017; Long et al., 2018; Shu et al.,

2018). Since these methods do not parameterise the feature distributions, they usually

require access to the source and target data simultaneously in order to align them. That

is, the source feature distribution cannot be stored in advance for later use if the source

data becomes unavailable.

Whilst model-based methods do exist for UDA, they are often not designed with the

source-free setting as a possibility. In particular, they may still use the source data

during adaptation on the target domain but not for aligning the distributions (Sun and

Saenko, 2016), or they do not design their parameterisations to be cheap to store offline

(Zellinger et al., 2017).

4.1.2 Source-Free Domain Adaptation

In the source-free setting, which we focus on in this chapter, there are two basic ap-

proaches. The first approach is to ask ‘what does the output of a well adapted classifier

look like?’ The second approach, and the one we take, asks ‘what does the input to a

classifier look like in a well adapted model?’

When considering the output of a well adapted classifier, since a good classifier should

predict a single class with high probability (effectively a one-hot vector) many SFDA

methods minimise the entropy of target domain predictions. This is equivalent to max-

imising prediction confidence and encourages one-hot outputs. One successful entropy

minimising technique is SHOT (Liang et al., 2020) which as well as minimising en-

tropy for single predictions additionally maximises the entropy of average predictions

which prevents the adapted classifier from always predicting a single class. This com-

bination of terms is a repurposing of the information maximisation (IM) loss of Krause

et al. (2010). Liang et al. (2020) also include a pseudo-labelling loss which is itself

entropy minimising (Lee et al., 2013). Whilst effective for improving classification

accuracy, entropy minimising losses are classification specific and, by making predic-

tions more confident, destroy model calibration.

Many more recent works train generative models to capture the source data distribution

so it can be utilised to help adapt in the target domain (Li et al., 2020; Morerio et al.,

2020; Kundu et al., 2020; Stan and Rostami, 2021). However, apart from being expen-

sive, these methods still rely on entropy minimisation (Li et al., 2020; Kundu et al.,
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2020) and pseudo-labelling (Morerio et al., 2020; Stan and Rostami, 2021). TENT

(Wang et al., 2021) also minimises entropy but only trains batch normalisation param-

eters aiming to rapidly adapt for online learning.

When we instead consider the input to the classifier in a well adapted model, we ask

how might we be able to align source and target feature distributions without access

to the source data? Whilst we are not aware of this question being asked explicitly by

other authors, there are a number of works that focus on aligning batch normalisation

(BN) statistics which implicitly align source and target marginal feature distributions.

Adaptive BN (AdaBN, Li et al. (2017a)) is a parameter free method that replaces the

source domain batch normalisation statistics with statistics calculated on the target

domain. Ishii and Sugiyama (2021) specifically retrain feature extractor parameters

in order that the batch normalisation statistics on the target domain after adaptation

are the same as the batch normalisation statistics were on the source domain before

adaptation. Hou and Zheng (2020) stylise target domain images to look more like

target domain images by matching batch normalisation statistics, implicitly linking

domain adaptation and style transfer approaches (as we do explicitly in Section 2.2.1).

The method we develop for SFDA also aligns marginal distributions but, by not being

restricted to the first two moments, is much more flexible in its parameterisation.

4.1.3 Continual Learning

A natural and important extension of domain adaptation is continual, or lifelong, learn-

ing (Parisi et al., 2019). Continual learning systems aim to effectively reuse learned

knowledge to adapt a model on a new task without significantly reducing performance

on previously learned tasks (often without access to previous task data). Whilst this

ability to sequentially learn new tasks is an important aspect of intelligence in biolog-

ical systems (Power and Schlaggar, 2017), neural networks are vulnerable to catas-

trophic forgetting, where the learning of a new task destroys performance on previ-

ously learned tasks. Very generally, continual learning methods try to avoid significant

changes in learned parameters in order to reduce the amount of forgetting. Differ-

ent methods use different techniques to maintain learned information and operate at

different levels of granularity, from regularisation on the whole network by matching

outputs between tasks through to estimating the importance of individual parameters

(Li and Hoiem, 2017; Kirkpatrick et al., 2017; Lee et al., 2017; Zenke et al., 2017).
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Whilst continual learning is a useful property for deployed intelligent systems to have,

the aim of the work in this chapter is to achieve the best performance on a new domain

without concern for maintaining performance on the source domain.

4.2 Feature Restoration

In source-free domain adaptation we have some model (neural network), fs, trained to

classify data in the source domain. This network can be viewed as a feature extractor,

gs, and a classifier, h, so fs = h◦gs. Whereas methods like SHOT (Liang et al., 2020)

are motivated by asking what the output of the classifier h should look like, we instead

consider the input to the classifier. In particular, the feature extractor’s (gs) learned

feature space Z = gs(Xs).

If we relate this to our data generating assumption in Figure 4.1a (using the mE notation

introduced in Section 2.1) where E = s and gs(Xs) = gs(ms(L)), in order to classify

well Z must capture information in L about Y despite the nuisance variables from E

(left path of Figure 4.2a). When the domain changes we still require that Z captures

information in L about Y but, when the data shifts to the target domain E = t, the

learned function gs will often not be able to well extract this information due to a

change in the nuisance variables1. Therefore, we learn a new feature extractor in the

target domain, gt .

Now consider the question, what does the output of the feature extractor (or the input

to the classifier) look like in a ‘good’ model for a new target domain? In an idealised

situation, where we have datapoints in source and target domains with identical L and

different E, we would like that gs(ms(L)) = gt(mt(L)) (right path of Figure 4.2a). In

realistic situations we cannot pair examples with identical L across different domains,

so instead we aim to match the outputs of gs(ms(·)) and gt(mt(·)) in distribution2. That

is, we relearn a feature extractor in the target domain, gt , in order that p(gt(Xt)) ≈
p(gs(Xs)).

We call the process of relearning gt in the target domain, with the aim to extract the

1By ‘well extract’ we mean extract latent Z in a way that allows the classifier, hs, to achieve good

performance.
2If our assumption in Figure 4.1a is reasonable, that E is all that changes across domains, then we

expect L to have a similar distribution across domains given enough data. That is, matching distributions

is a reasonable approach.
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(a) Feature restoration (b) Measurement shifts (c) Non measurement shifts

Figure 4.2: Feature restoration diagram and measurement shift examples. (b,c):

top=source, bottom=target. (b): CIFAR-10-C ‘frog’ & CAMELYON17 ‘tumor’. (c): OFFICE-

31 ‘desk chair’ & VISDA-C ‘person’.

same Z as in the source domain, feature restoration. The idea is that restoring features

in this way should be sufficient to restore classifier performance. In synthetic examples

where we can generate data with identical L across domains we can quantitatively mea-

sure the degree of restoration with |gs(ms(L))−gt(mt(L))|. If we consider each neuron

or unit separately, this intuitively aligns with ideas of neuron invariance (Quiroga et al.,

2005), that is, if a neuron responds in the same way to a feature with the same semantic

meaning this is sufficient to restore classifier performance. This intuitive idea is seen

in Figure 4.1b for a single neuron in the first layer of a convolutional network which

responds to a black and white horizontal edge (left column, showing the maximum ac-

tivating patches and the activation distribution for this neuron). Upon some change in

domain (here black and white digits to green and purple digits) the neuron responds in

a different way (middle column, showing the new activation distribution in orange and

the original activation distribution in blue along with the max activating patches which

have no clear semantic meaning). By matching the activation distributions so the neu-

ron responds in the same way, semantic meaning is restored (right column, showing

the activation distribution after feature restoration in orange and the original activation

distribution in blue along with the max activating patches which now share the same

‘horizontal edge’ semantic meaning).

4.2.1 When Does Feature Restoration Make Sense?

As discussed, our approach is based on the idea that neurons should respond in the

same way to features with the same semantic meaning across domains. In practice this

approach will not work for all domain adaptation tasks where restoring performance

may require learning features with new semantic meaning. This can happen because
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of concept shift (Moreno-Torres et al., 2012, Sec. 4.3), where the features that define

a class can change across domains (a shift in L when E changes) or because a source

neural network can learn to exploit spurious correlations, or shortcuts, in the data (Ar-

jovsky et al., 2019; Geirhos et al., 2020) that do not work in the target domain (i.e. it

is possible to learn Y from X without relying solely on L).

However, for many domain adaptation tasks restoring the source features in the target

domain will be a reasonable thing to do. We call the shifts where it is possible to

restore features to restore performance measurement shifts as they are often caused by

a change in measurement system (e.g. different cameras, lighting etc.). Figure 4.2b

shows measurement shift examples, note the right hand column showing a change in

colour and contrast caused by a change in machinery used to capture these cell images

(Bandi et al., 2018). By making the assumption that we are working with measurement

shifts we will see that we can gain benefits over other methods for SFDA in improved

calibration and few-shot performance.

To further examine the problems of non measurement shifts examine Figure 4.2 which

shows domain adaptation examples that are not measurement shifts (Saenko et al.,

2010; Peng et al., 2018a). The right column of this figure shows examples of the

person class in synthetic and real domain for the VISDA-C dataset, as a domain adap-

tation task this type of set up provides many difficulties (Ringwald and Stiefelhagen,

2021). For example, as the synthetic domain contains only two grey person models,

rendered from different viewpoints with different lighting, in the real-to-synthetic task

a source network can learn to exploit image features in the real domain that do not

exist in the synthetic domain e.g. complex textures (Geirhos et al., 2019b). These dif-

ficulties cause existing methods to rely on models that are initially pretrained using

a different large dataset (commonly IMAGENET (Russakovsky et al., 2015)) in order

to extract more general image features first, in effect implicitly changing the domain

adaptation task from SYNTHETIC → REAL to IMAGENET → SYNTHETIC → REAL.

Some works even lower the learning rate of early network layers after IMAGENET pre-

training in order to better maintain the low-level general features (Liang et al., 2020).

Table 4.1, adapted from Eastwood et al. (2022), shows the reliance of existing methods

on this IMAGENET pretraining step in order to achieve good performance on this type

of domain adaptation task.

Due to these issues, we focus our efforts on measurement shifts, both real and syn-

thetic, and evaluate our feature restoration approach in this setting.
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Table 4.1: VISDA-C Results (ResNet-101). Without IMAGENET pretraining adaptation

on the SYNTHETIC→ REAL task achieves extremely low performance.

Model ImageNet pretrain Avg. Acc.

No corruption ✗ 99.8

Source-only ✗ 10.4
AdaBN (Li et al., 2017a) ✗ 15.9
SHOT (Liang et al., 2020) ✗ 17.1

No corruption ✓ 99.6

Source-only ✓ 47.0
AdaBN (Li et al., 2017a) ✓ 65.2
SHOT (Liang et al., 2020) ✓ 82.9

4.3 EMNIST-DA

To examine adaptation on measurement shifts we use several existing datasets ex-

plained and visualised in Appendix B.1. However, we find it useful to create an ad-

ditional original dataset designed to highlight the benefits of feature restoration. This

dataset is designed to be very simple to understand and interpret while providing a

range of adaptation difficulties. To do this we base our dataset on the digit and char-

acter extended MNIST dataset, EMNIST, as MNIST based datasets tend to be too easy

to resolve (see Section 4.5, Table 4.4). To get a range of adaptation difficulties we

choose 13 conceptually simple shifts designed to give a range of initial accuracies on

a model trained on the original (black and white) EMNIST data. We call this dataset

EMNIST-DA, a sample from each shift is shown in Figure 4.3 with the ‘identity’ shift

being the original data. To use this dataset we train models on the train split of EMNIST

and adapt on shifts generated from data from the test split of EMNIST. This is done so

we do not have exactly the same samples (with identical L) to adapt on, which avoids

relying too heavily on such a requirement.

4.4 Restoring Features

As outlined, our aim is to relearn the feature extractor in the target domain such that

p(gt(Xt))≈ p(gs(Xs)). We break this process into two parts, steps to take during model

development and the adaptation process after model deployment (SFDA). We will first

outline the formal mathematical set up to allow us to rigorously explain the pipeline.
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Figure 4.3: EMNIST-DA shifts.

Feat. Extractor Classifier

Source data Target data

Development Deployment

Feat. Extractor Classifier

Figure 4.4: Feature Restoration Overview. Left: At development time, approximate marginal

feature distributions, {pzd}D
i=1, are saved using the source data. Right: At deployment time, the

approximations of the marginal feature distributions under the target data, {qzd}D
i=1, are aligned

with those under the source data.

During development a source model, fs : Xs → Ys, is trained on source data Ds =

{(x(i)s ,y(i)s )}ns
i=1 with x(i)s ∈Xs and y(i)s ∈Ys and ns the number of labelled source domain

samples. After training, this model is deployed and receives some unlabelled target

domain data Dt = {x
(i)
t }

nt
i=1, with x(i)t ∈ Xt with nt samples. To adapt on this new data

we learn a new target model ft : Xt→ Yt which aims to predict the target domain labels

{y(i)t }
nt
i=1, where y(i)t ∈ Yt . As we are interested in the source-free setting, the source

data, Ds, is not available during this adaptation process.

4.4.1 Development

During development our model is designed with the assumption that a domain shift

will occur after deployment. Previous works have also made similar assumptions, us-
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ing training techniques3 to encourage clustering of representations (Liang et al., 2020),

storing mean per-class feature representations (Chidlovskii et al., 2016) or generating

artificial negative datasets (Kundu et al., 2020). For us, this assumption means stor-

ing lightweight approximations of the marginal feature distributions. We denote these

statistics of the source model as Ss.

So, our source model fs is trained to classify Ds using some loss function, Lsrc,

in our case the standard multi-class cross-entropy loss. Unlike other methods, stor-

ing marginal feature distributions does not require any change to a standard training

pipeline, instead occurring with a single additional forwards pass after training. This

means the method can easily be used on off the shelf pretrained models without expen-

sive or time consuming retraining. We can again think of this source model in terms

of a feature extractor gs : Xs → RD and a classifier h : RD → Ys, with D the dimen-

sionality of the hidden feature space. If we have paired source and target measurement

shift data, then our aim is to learn a new feature extractor, gt : Xt → RD, such that

z(i)s = gs(x
(i)
s ) = z(i)t = gt(x

(i)
t ), where z(i)s is the hidden feature vector for sample i from

the source domain and z(i)t the same in the target domain. The classifier h therefore

remains unchanged in order that the predicted labels, ŷ(i)s = fs(x
(i)
s ) = h(gs(x

(i)
s )) and

ŷ(i)t = ft(x
(i)
t ) = h(gt(x

(i)
t )), for data from source and target domains are equal.

In order to achieve our aim that p(gt(Xt)) ≈ p(gs(Xs)), during development we store

some approximation to the feature distribution, p(gs(Xs)), so that when data Xs in

unavailable we can still align distributions. When D is large, dealing with the joint

distribution over features can be prohibitively expensive4, therefore, we choose to ap-

proximate (and store representations of) the marginal feature distributions. Noting that

this amounts to storing approximations of the 1D activation distributions of each of the

D units in the final layer of gs, we see more clearly the links to invariance discussed

in Section 4.2. That is, we will align the activation distributions of individual unit’s in

order to encourage them to respond in the same way to target data as they did to source

data. Figure 4.4 shows an overview of our approach, with the development figure on

the left showing the storing of approximate marginal distributions on the source data.

To capture the marginal distributions we use softly binned (Dougherty et al., 1995)

3Label smoothing (Szegedy et al., 2016; Müller et al., 2019) and learning rate design.
4If we assume feature distributions are jointly normal estimating the covariance matrix is O(ND2)

per update, where N is the batch size. If we try a more general histogram binning approximation with B

bins per dimension, memory complexity is O(BD).
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Table 4.2: Storage Comparisons. The storage (MB) required is shown for different

datasets, the parameters of the corresponding source model architectures, and the

softly binned histogram parameterisations (bin-counts) of marginal feature distributions.

MNIST CIFAR-100 VisDA-C ImageNet

Architecture LeNet ResNet-18 ResNet-101 ResNet-101
Source dataset 33 150 7885 138000
Source model 0.9 49 173 173
Source bin-counts 0.004 0.02 0.5 0.5

histograms. By using histograms we are able to flexibly capture the 1D distributions

which may be skewed or multi-modal (see Section 4.5.1). The soft binning (rather

than hard binning) makes the distribution parameterisation differentiable which allows

us to backpropagate through this operation. Additionally, this representation is very

lightweight and does not scale with dataset size as, with a fixed number of bins B and

feature space dimensionality D, storage is constant O(BD). This storage is inconse-

quential when compared to the storage required for the source model itself as shown

in Table 4.2.

4.4.1.1 Calculating Softly Binned Histograms

To calculate the softly binned histograms, to approximately parameterise the marginal

feature distributions, we use the soft binning function outlined by Yang et al. (2018,

Section 3.1). We denote the marginal distribution of the dth feature, zd , in the fea-

ture space created by gs, pzd . This gives us the D distributions {pzd}D
i=1. For a sin-

gle feature we approximately parameterise pzd with B normalised bin counts πs
zd
=

[πs
zd ,1, . . . ,π

s
zd ,B]. Each normalised bin count, πs

zd ,b
, is the probability that a single sam-

ple z(i)d will be in bin b under the source data, and thus ∑
B
b=1 πs

zd ,b
= 1.

To calculate these normalised bin counts πzd (dropping the source/target domain nota-

tion for clarity), the first step is to normalise the range of values zd can take on to be

in [0,1]. This ensures overlapping supports for variables with different ranges, easier

comparison between distributions for different features, and that the binning softness

is comparable across variables (the degree to which mass is distributed into neigh-

bouring bins). To normalise the range of zd we need to calculate the maximum and

minimum value of zd over all samples, {z(i)d }
n
i=1. These are denoted zmax

d = maxi z(i)d

and zmin
d = mini z(i)d respectively.
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The next step is to create B bins using B− 1 uniformly-spaced and monotonically-

increasing cut points, c, over [0,1]: c= [c1,c2, . . . ,cB−1] =
1

B−2 [0,1,2, . . . ,B−3,B−2].

Using the cut points and the maximum and minimum values we can calculate the soft

count for each bin for a sample z(i)d using the vector soft binning function u. This

creates a B-dimensional vector of soft counts u(z(i)d ),

u(z(i)d ;zmin
d ,zmax

d ) = σ((w

(
z(i)d − zmin

d

zmax
d − zmin

d

)
+w0)/τ), (4.1)

where w = [1,2, . . . ,B], w0 = [0,−c1,−c1− c2, . . . ,−∑
B−1
j=1 c j], τ > 0 is a temperature

factor and σ is the softmax function. The output u(z(i)d )b is the mass assigned to bin

b, and ∑
B
b=1 u(z(i)d )b = 1 for single sample z(i)d . Both w and w0 are predefined constant

vectors based on the number of bins as in Yang et al. (2018). The temperature param-

eter τ changes the behaviour of u, with u(z(i)d ) tending to a one-hot vector as τ→ 0.

We set τ = 0.01 in our experiments. If we get new values outside the range of zmin
d and

zmax
d they will be handled sensibly by the soft binning function falling into the leftmost

or rightmost bins respectively as τ→ 0. Finally, we get the total bin counts over all

samples, by summing u(zd
(i)) over i, before dividing by the total number of samples,

n, to get normalised bin counts πzd , i.e., πzd = ∑
n
i=1

u(zd
(i);zmin

d ,zmax
d )

n .

As discussed, the reasoning for using this approach is so that the parameterisation is

both flexible and differentiable, but, as seen in the left ‘cloud’ of Figure 4.4 which

depicts an approximate marginal distribution created with this process, for intuitive

understanding and reasoning we can think of these distributions as simple histograms.

To summarise, during development we can use the source data with this soft binning

functionality to calculate normalised bin counts for the dth feature as

π
s
zd
=

ns

∑
i=1

u(z(i)d )

ns
=

ns

∑
i=1

u(gs(x
(i)
s )d ;zmin

d .zmax
d )

ns
. (4.2)

We can calculate these counts for all D features to get πs
z = [πs

z1
,πs

z2
, . . . ,πs

zD
]. We

additionally find it useful to store parameterisations of the marginal logit distributions,

πs
a, where a(i) is the output of the classifier, h, pre-softmax for sample i, and πs

a is

defined analogously to πs
z. The idea behind additionally aligning logit distributions is

to further constrain the ways in which the marginal feature distributions can be aligned.

The normalised bin counts for marginal feature and logit distributions along with the

maximum and minimum values features and logits take on in the source data form the
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lightweight statistics that can be packaged with the model for use during deployment.

Ss = {πs
z,π

s
a,zmin,zmax,amin,amax}, where zmin = [zmin

1 ,zmin
2 , . . . ,zmin

D ] and zmax, amin,

and amax are defined analogously..

4.4.2 During Deployment

After training the model, fs, is deployed along with the source statistics Ss. At this

point some domain shift occurs (Figure 4.1a) and we receive nt unlabelled examples

from the target domain, Dt = {x
(i)
t }

nt
i=1.

Given a batch of data from Dt we can approximate each of the D marginal feature

distributions and K marginal logit distributions in the target domain using the same

soft binning process described in Section 4.4.1.1. This gives a parameterisation of

the target domain distributions using πt
z and πt

a. In order to align the target distribu-

tions with the source distributions we retrain the feature extractor (gs to gt) such that

the Kullback–Leibler (KL) divergence (Kullback, 1959) between the source and tar-

get marginal distributions is minimised5. To do this we minimise the following loss

function using the target domain data,

Ltgt(π
s
z,π

t
z,π

s
a,π

t
a) =

D

∑
d=1

DSKL(π
s
zd
||πt

zd
)+

K

∑
k=1

DSKL(π
s
ak
||πt

ak
), (4.3)

where DSKL(p||q) = 1
2DKL(p||q)+ 1

2DKL(q||p) is the symmetric KL divergence that

can be easily calculated with our binning parameterisation using6

DKL(π
s
zd
||πt

zd
) =

B

∑
b=1

π
s
zd ,b log

πs
zd ,b

πt
zd ,b

. (4.4)

Note that the source distributions are fixed during deployment (as we do not have

access to the source data so they cannot be altered) and variable ranges are normalised

using the source data minimum and maximum values (zmin,zmax,amin,amax) to ensure

equivalent scaling. This means that πs
zd ,b

is the probability of a source domain sample

for feature d falling into bin b and πt
zd ,b

similarly for a target domain sample. During

adaptation πt
z and πt

a are approximated using a batch of data to calculate Equation 4.2

and then evaluate the loss. As the training of gt progresses, πt
z and πt

a change as the

5Any measure of the difference between distributions that can be minimised should also suffice

including other f -divergences or the use of optimal transport Courty et al. (2017).
6In a slight overloading of notation we write DKL(π

s
zd
||πt

zd
) for the KL divergence between the

distributions parameterised by πs
zd

and πt
zd

.



Chapter 4. Feature Restoration for Source-Free Domain Adaptation 69

parameters of gt change to align the marginal distributions, whereas πs
z and πs

a remain

fixed.

4.4.2.1 Pseudo-Code Summary

The processes for feature restoration during development and deployment are sum-

marised in pseudo-code in Algorithms 1 and 2. During development the source model

is trained and source statistics, Ss, calculated. During deployment the feature extractor,

gt , is learned in order to realign the target feature distributions with those saved in the

source domain.

Algorithm 1: Feature Restoration at development time.
Input: Untrained source model fs, labelled source data Ds = (Xs,Ys), number of

bins B, number of training iterations I.

/* Train source model fs = h◦gs */

for i in range(I) do
Li← Lsrc( fs,Ds) ;

fs← SGD( fs,Li) ;

/* Calculate feature and logit ranges */

zmin,zmax← CALC RANGE(gs,Xs) ;

amin,amax← CALC RANGE( fs,Xs) ;

/* Calculate feature and logit bin counts */

πs
z← CALC BC(gs,Xs;zmin,zmax,B) ;

πs
a← CALC BC( fs,Xs;amin,amax,B) ;

/* Gather source stats Ss */

Ss←{πs
z,π

s
a,zmin,zmax,amin,amax} ;

Output: fs,Ss
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Algorithm 2: Feature Restoration at deployment time.
Input: Trained source model fs, unlabelled target data Xt , source data statistics

Ss, number of adaptation iterations I.

/* Initialise target model ft = h◦gt */

ft ← fs ;

/* Adapt target feature extractor gt */

for i in range(I) do
πt

z← CALC BC(gt ,Xt ;zmin,zmax,B) ;

πt
a← CALC BC( ft ,Xt ;amin,amax,B) ;

Li← Ltgt(π
s
z,π

t
z,π

s
a,π

t
a) ;

gt ← SGD(gt ,Li) ;

Output: gt

4.4.2.2 The Bottom-Up Inductive Bias

Intuitively many of the measurement shifts we consider should be largely resolvable by

changing parameters in the early layers of gt . That is, if we can learn to extract features

with the same semantic meaning across domains in the early layers then the combining

of these features performed by later layers does not need to change allowing us to

preserve learned structure. For example if we can learn to extract the same initial edges

from an image after a change in brightness (or a change in colour as in Figure 4.1b),

the remainder of gt should still be valid.

However, updating with a standard gradient based update will adapt all parameters of

gt simultaneously. We can include the inductive bias outlined above by adapting gt in a

bottom-up manner where successive layers (or blocks of layers for ResNets (He et al.,

2016)) are gradually unfrozen. This means the first layer (or block) is trained for sev-

eral epochs before also allowing the second layer (or block) to update and continuing

to add one layer (or block) at a time until all parameters of gt are able to update.

With this additional inductive bias, we call our method Bottom-Up Feature Restoration

(BUFR) and show in the results (Section 4.5) that this structure preserving regularisa-

tion significantly improves classification performance, data efficiency and model cal-

ibration. In the next chapter (Chapter 5) we will investigate this intuition further and

explore which parameters are best to update for different types of change in domain.
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4.4.3 Model Implementation Details

Before exploring the performance and behaviour of feature restoration for source-free

domain adaptation we will briefly outline the technical implementation of our methods

and the baseline methods with which we can compare.

We evaluate all our methods on multiple datasets described in Section 4.3 and Ap-

pendix B.1. For datasets using digits and characters, that is, when the source domain

data is MNIST or EMNIST, we use a simple 5 layer convolutional architecture based

on LeNet (LeCun et al., 1998). The specifics are shown in Table 4.3. For all other

datasets (object recognition and medical diagnosis) we use a standard ResNet-18 (He

et al., 2016).

Table 4.3: LeNet based network architecture used for digit and character datasets. For

convolutions, the weights-shape entry is: num. input channels × num. output channels

× filter height × filter width.

Block Weights-Shape Stride Padding Activation Dropout Prob.

Conv + BN 3×64×5×5 2 2 ReLU 0.1

Conv + BN 64×128×3×3 2 2 ReLU 0.3

Conv + BN 128×256×3×3 2 2 ReLU 0.5

Linear + BN 6400×128 N/A N/A ReLU 0.5

Linear 128×Number of Classes N/A N/A Softmax 0

During the development phase we use validation sets to select learning rates and num-

ber of training epochs for each dataset and architecture. Dropout is used for regu-

larisation as shown in Table 4.3. After development the last linear layer is frozen as

the classifier h and the remaining network parameters are fine-tuned to learn gt . The

dropout is turned off when gathering source statistics and during deployment as we do

not want to randomly drop samples when parameterising the marginal distributions.

During adaptation (deployment) all methods are trained using stochastic gradient de-

scent (SGD) with a momentum of 0.9 and results reported over 5 random runs. Where

applicable a batch size of 256 is used. We use the best performing learning rate from

{0.0001,0.001,0.01,0.1,1}. It is worth noting that in order to select the best learn-

ing rate we must use a labelled target domain validation set as is common practice

in UDA (Gulrajani and Lopez-Paz, 2021) although often not made explicit7. When
7A labelled target domain dataset for model selection may not actually be available in a real world

UDA/SFDA situation.
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training bottom-up we use 30 epochs per block and gradually decay the learning rate

as a function of the number of unfrozen blocks, all other methods are trained with a

constant learning rate for 150 epochs.

4.4.3.1 Baselines

After pretraining (development) we report the performance of the source model on the

source domain data as no corruption and the performance before adaptation on the tar-

get data as source-only. We also create an approximate upper-bound on performance,

target-supervised, which trains on the target domain using labelled data and reports test

accuracy using an 80-10-10 training-validation-test split. We then compare our method

with some UDA results reported in the literature and implement several baselines for

direct comparison which we briefly summarise here.

AdaBN. Replace the batch normalisation statistics of the source data with those of

the target data (Li et al., 2017a, 2018a). We also use this method to measure shift

‘severity’, that is, how hard it is to resolve a given change in domain, as some shifts

with low source-only accuracy can be well resolved with this simple baseline.

PL. A basic pseudo-labelling approach (Lee et al., 2013) which selects the label with

the highest predicted probability on the target data and uses this as if it were the real

label to train with cross-entropy.

SHOT-IM. The information-maximisation loss used by Liang et al. (2020) which aims

to minimise the entropy of single sample softmax predictions (make close to one-

hot) while maximising the entropy of the average softmax prediction (make close to

uniform across all samples)

SHOT. The full method of Liang et al. (2020) which uses the SHOT-IM loss along with

a self-supervised pseudo-labelling loss. Additionally specific pretraining techniques

are used (e.g. label smoothing).

BNM-IM. The method used by Ishii and Sugiyama (2021) which combines the SHOT-

IM loss with a batch norm matching loss (BNM) that aims to align the means and

variances of the target domain features with the means and variances captured by the

source model batch normalisation statistics.

Marg. Gauss. An alternative parameterisation for aligning the marginal distributions

where we approximate them with 1D Gaussian distributions. This can be done using



Chapter 4. Feature Restoration for Source-Free Domain Adaptation 73

the BNM loss of Ishii and Sugiyama (2021).

Full Gauss. Rather than aligning marginal distributions we experiment with aligning

a Gaussian approximation to the full D-dimensional joint feature distribution. An em-

pirical mean vector and a covariance matrix are estimated over the source data after

pretraining the model. To adapt to the target data, empirical mean and covariances

are calculated for each batch and the distributions aligned using the analytical formula

for the KL divergence between multivariate Gaussians (Duchi, 2007, Sec. 9). We use

DKL(Q||P) where Q is the target domain distribution and P the source domain as, in

this direction, we only need invert the covariance matrix for P once, which can be done

offline during development, rather than for Q on every batch.

TENT. Minimise the prediction entropy (close to one hot) by updating only batch nor-

malisation parameters (Wang et al., 2021). We note that TENT is designed for an

‘online’ setting, where only a single epoch of training is permitted. Whilst we pri-

marily evaluate in the ‘offline’ situation we also evaluate some of our methods in this

single epoch set-up. In the online scenario we find methods are very sensitive to the

learning rate and thus search over learning rates {0.1,0.01,0.001,0.0001} and report

the performance for the best learning rate for a specific method. Additionally, as learn-

ing quickly is very important in this setting, we increase the temperature parameter τ in

Equation 4.1 to 0.05. Roughly speaking, this gives a ‘lower resolution’ approximation

which encourages alignment in the most important areas.

4.4.3.2 Model Calibration

Alongside model accuracy we also evaluate model calibration with the Expected Cal-

ibration Error (ECE, Naeini et al. (2015)). ECE measures the expected difference

between model confidence and model accuracy, and is better when it is lower. As an

example, we would like that when a binary classification model predicts class A with

probability 0.8 and class B with probability 0.2 then the true class label is class A 80%

of the time and class B 20% of the time. If this is true over all probability values the

model can predict, we say the model is well calibrated. A well calibrated model means

that when our model predicts with high confidence we can trust its predictions.

To calculate ECE we bin predictions into 10 evenly-spaced bins based on confidence

and take the absolute difference between average accuracy and average confidence of

the samples in each bin. To get a single value, the absolute differences per bin are
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averaged over all bins, weighted by the normalised bin counts. We can also consider

the Maximum Calibration Error (MCE) which is the maximum absolute difference

over the bins.

Model calibration can also be visualised using reliability diagrams (DeGroot and Fien-

berg, 1983; Niculescu-Mizil and Caruana, 2005) and confidence histograms (Zadrozny

and Elkan, 2001). Reliability diagrams plot average accuracy for samples in a bin

against the confidence bins, with a well calibrated model showing bars with heights

approximating the y = x graph. Since reliability diagrams do not show the underlying

distribution of model prediction confidences, they can be paired with a histogram of

the confidences to visualise the underlying frequencies with which samples occur in

each bin (as in Guo et al. (2017, Figure 1)).

4.5 Performance and Analysis

We now have a full description of our approach to source-free domain adaptation for

measurement shifts and can evaluate the pros and cons of this technique. We both

compare models quantitatively and analyse model behaviour to try and gain a deeper

understanding of observed phenomena.

4.5.1 Distribution Alignment

Figure 4.5a shows source and target histogram parameterisations for 6 marginal dis-

tributions when adapting on the EMNIST-DA stripe shift. We observe that the source

distributions may be heavily skewed (i.e. not Gaussian) and that the target activation

distributions before training gt are substantially different from the source activation

distributions.

Figures 4.5b, 4.5c & 4.5d show the same source distributions with the target distribu-

tions after using different adaptation methods. Figure 4.5d qualitatively shows that the

loss function we have designed (Equation 4.3) does achieve our objective of closely

aligning marginal feature distributions. Figures 4.5b & 4.5c show that other meth-

ods for SFDA achieve their results without achieving the same level of distribution

alignment. In Appendix B.2 we show similar figures for CIFAR-10-C which show

that marginal distributions may also be multimodal. Appendix B.2 additionally shows

marginal logit distributions.
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(a) Source-Only (b) AdaBN

(c) SHOT-IM (d) BUFR

Figure 4.5: Histograms showing distribution alignment on the EMNIST-DA stripe shift.

The blue curves are the saved marginal distributions under the source data (identity).

The orange curves are the marginal distributions under the target data (stripe). (a):

Source-Only, before adaptation distributions are different. (b,c): AdaBN and SHOT-IM,

after adapting the marginal distributions are not aligned despite achieving reasonable

accuracy. (d) BUFR, after adaptation the activation distributions align very closely, mak-

ing DSKL very small.
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Table 4.4: Digit Dataset Results. Shown are the mean and 1 standard deviation.

Model
MNIST-C MNIST-M

ACC ↑ ECE ↓ ACC ↑ ECE ↓

No corruption 99.5±0.1 0.3±0.0 99.5±0.1 0.3±0.0

Source-only 86.2±1.8 7.2±1.4 42.7±4.6 27.0±7.1
AdaBN (Li et al., 2017a) 94.2±0.2 4.1±0.1 59.1±1.9 24.4±2.8
PL (Lee et al., 2013) 96.4±0.4 3.1±0.4 43.1±2.1 56.1±2.2
SHOT-IM (Liang et al., 2020) 97.3±0.2 2.3±0.2 66.9±9.3 30.9±9.0
SHOT (Liang et al., 2020) 97.7±0.2 2.0±0.2 94.4±3.1 2.8±2.9
FR (ours) 96.7±0.1 2.5±0.2 86.5±0.6 9.8±0.8
BUFR (ours) 96.4±0.6 3.0±0.6 96.2±1.7 2.9±1.5

Target-supervised 99.3±0.0 0.5±0.0 98.5±0.0 1.1±0.1

4.5.2 Quantitative Performance

We now know that our loss function creates the desired behaviour so can evaluate the

quantitative performance of our feature restoration (FR) and bottom-up feature restora-

tion (BUFR) methods for SFDA on measurement shifts. Initial experiments on MNIST-

M and MNIST-C (Table 4.4) showed that, for these very simple datasets, all methods

achieve good performance with accuracy greater than 95% and low calibration error.

Full per-shift results for all datasets are given in Appendix B.3, these show that if we

remove one assumption breaking corruption from MNIST-C, BUFR and SHOT (the

strongest baseline) perform equivalently. That is, due to the low number of classes and

the relatively mild corruptions, the MNIST based datasets are not challenging enough

to highlight major differences between different SFDA approaches.

It is for this reason that we created the more challenging EMNIST-DA dataset for which

results are shown in Table 4.5. This table reports classification accuracy and ECE av-

eraged over all shifts as well as the most severe and mild individual domain shifts, as

measured by AdaBN performance. Using this dataset, containing many more chal-

lenging shifts, BUFR convincingly outperforms all baseline methods in terms of both

accuracy and calibration. This is particularly noticeable on severe shifts where initial

feature-space class-separation, that is, the extent to which classes from the target do-

main cluster in feature space on the source model, is likely poor. We believe that this is

important because methods that make use of some form of entropy minimisation (PL,
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Table 4.5: Digit and Character Results. Shown are the mean and 1 standard deviation.

Model
EMNIST-DA EMNIST-DA-SEVERE EMNIST-DA-MILD

ACC ↑ ECE ↓ ACC ↑ ECE ↓ ACC ↑ ECE ↓

No corruption 89.4±0.1 2.3±0.1 89.4±0.1 2.3±0.1 89.4±0.1 2.3±0.1

Source-only 29.5±0.5 30.8±1.6 3.8±0.4 42.6±3.5 78.5±0.7 4.8±0.5
AdaBN (Li et al., 2017a) 46.2±1.1 30.3±1.1 3.7±0.7 52.4±4.9 84.9±0.2 4.9±0.3
Marg. Gauss. (Ishii and Sugiyama, 2021) 51.8±1.1 26.7±1.1 4.8±0.5 51.6±6.4 85.8±0.3 4.5±0.3
Full Gauss. 67.9±0.7 17.4±0.7 29.8±9.8 45.8±8.4 85.7±0.2 4.9±0.2
PL (Lee et al., 2013) 50.0±0.6 49.9±0.6 2.7±0.4 97.2±0.4 83.5±0.1 16.4±0.1
BNM-IM (Ishii and Sugiyama, 2021) 63.7±2.2 35.6±2.2 8.3±1.3 90.2±1.1 86.5±0.1 13.0±0.1
SHOT-IM (Liang et al., 2020) 70.3±3.7 29.6±3.7 24.0±7.5 76.0±7.5 86.3±0.1 13.7±0.1
SHOT (Liang et al., 2020) 80.0±4.4 19.7±4.4 55.1±23.5 42.7±23.0 86.1±0.1 14.8±0.1
FR (ours) 74.4±0.8 12.9±0.9 15.3±6.8 58.0±6.8 86.4±0.1 4.6±0.3
BUFR (ours) 86.1±0.1 4.7±0.2 84.6±0.2 5.6±0.3 87.0±0.2 4.2±0.2

Target-supervised 86.8±0.6 7.3±0.7 85.7±0.6 7.0±0.5 87.3±0.7 8.4±1.1

SHOT-IM, SHOT, BNM-IM) essentially work to make predictions more confident but,

if initial predictions are poor due to a mixing of class representations in feature space,

increasing confidence alone may not restore classification performance. A large vari-

ance across runs for severe shifts with SHOT-IM and SHOT provides further evidence

for this reasoning; the large variability suggests the differences in the initial target do-

main feature space across runs have a big impact on how well the adapted model will

perform.

On the most severe shift only BUFR achieves good performance in the target domain

after adaptation. For the mild shift all methods perform well, but we still see that BUFR

performs the best and that the methods that make use of entropy minimisation are much

more poorly calibrated than those that don’t, due to maximising the confidence of

predictions. Indeed, the calibration benefits of methods that lack entropy minimisation

terms when optimising gt (AdaBN, Marg. Gauss, Full Gauss., FR, BUFR) are seen

most clearly in the mild shift where these methods are notably better calibrated than

other methods since they do not work to make predictions more confident.

4.5.2.1 Visualising Model Calibration

Figures 4.6, 4.7 & 4.8 emphasise the differences in model calibration for our FR meth-

ods when compared to an entropy minimising method in SHOT-IM. These figures show

reliability diagrams alongside ECE and MCE values for all EMNIST-DA shifts (Fig-

ure 4.6), the most severe EMNIST-DA shift (Figure 4.7), and the most mild EMNIST-DA

shift (Figure 4.8). The reliability diagrams are paired with confidence histograms to
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visualise the underlying frequencies with which predictions are made within a given

confidence range.

As a general behaviour, compared to the original model pretrained and evaluated in the

source domain (Figures 4.6a & 4.6e), the SFDA methods shown all tend towards over-

confidence but our methods significantly less so. The size of the red ‘Gap’ bar below

the line y = x shows the extent of this overconfidence. Looking at the rightmost bin in

Figures 4.6b, 4.6c & 4.6d we see that when FR methods predict with high confidence

they are much more likely to be accurate than SHOT-IM which simply predicts ev-

erything with high confidence as seen in Figure 4.6f. We also see that BUFR remains

well calibrated even on severe shifts whereas SHOT-IM confidently makes incorrect

predictions (Figure 4.7). As seen in Table 4.5, our methods are also better calibrated

on the mild shift (Figure 4.8).

(a) Original (b) SHOT-IM (c) FR (d) BUFR

(e) Original (f) SHOT-IM (g) FR (h) BUFR

Figure 4.6: Reliability diagrams and confidence histograms over all EMNIST-DA corrup-

tions. (a-d): Reliability diagrams. (e-h): Corresponding confidence histograms. (a & e):

The ‘Original’ source model is well-calibrated on the source data. (b & f): Minimising

prediction entropy leads to overconfidence. (c & g, d & h): Our methods, FR and BUFR,

which do not make use of entropy minimisation, are more well calibrated.
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(a) Source-only (b) SHOT-IM (c) FR (d) BUFR

(e) Source-only (f) SHOT-IM (g) FR (h) BUFR

Figure 4.7: Reliability diagrams and confidence histograms for a severe EMNIST-DA shift

(sky). (a-d): Reliability diagrams. (e-h): Corresponding confidence histograms. (a &

e): The source model on the target data achieves poor accuracy but generally predicts

with low confidence. (b & f): SHOT-IM confidently makes incorrect predictions. (d & h):

Our BUFR method is more well calibrated.

4.5.2.2 Object Recognition Results

We evaluate our method on CIFAR-10-C and CIFAR-100-C to see how performance

changes when classifying images that are more complex than single handwritten char-

acters. Table 4.6 gives the classification accuracies and expected calibration errors for

different methods on these datasets. Note that this table contains the results reported

for two UDA (i.e. not source-free) methods (Ganin et al., 2016; Sun et al., 2019).

For this classification task we again see that BUFR gives the best performance, pro-

viding the highest accuracies and lowest ECEs (except for ECE on CIFAR-100-C).

More importantly we see similar trends to those seen when using EMNIST-DA. Firstly,

we see that the bottom-up inductive bias significantly improves performance. Sec-

ondly, that whilst entropy minimisation techniques are the most competitive baselines

in terms of classification accuracy these methods are poorly calibrated compared to

methods that avoid maximising confidence. Finally, that the benefits of BUFR are

most clearly realised for severe shifts, for example, in the CIFAR-10-C per-shift re-

sults of Appendix B.3 the impulse-noise shift achieves 75% accuracy with the best
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(a) Source-only (b) SHOT-IM (c) FR (d) BUFR

(e) Source-only (f) SHOT-IM (g) FR (h) BUFR

Figure 4.8: Reliability diagrams and confidence histograms for a mild EMNIST-DA shift

(shot noise). (a-d): Reliability diagrams. (e-h): Corresponding confidence histograms.

Examining the rightmost bin show that when FR and BUFR are confident (c & g, d & h),

predictions are more accurate than for SHOT-IM (b & f).

performing baseline whereas BUFR achieves 89%.

Finally, we note that several recent SFDA methods outperform slightly older UDA

methods suggesting that the use of heuristics, such as ‘what does the output of a good

classifier look like?’ or ‘gradually make predictions on the input you are seeing more

and more confident,’ is an extremely powerful approach to learning given a reasonable

initial model to transfer from. Surprisingly, in Table 4.6 BUFR even outperforms the

target-supervised baseline. We attribute this to the efficacy of the bottom-up inductive

bias and the relatively small number of target domain samples which must be reduced

further into training, validation and test splits for supervised learning.

4.5.2.3 Online Results

Although not our main focus, we also evaluate methods in the ‘online’ setting of Wang

et al. (2021) where we view the target domain data as an online stream of incoming

data so are restricted to one pass through the data and care primarily about how fast

and how well the model can be made to work in the target domain. For this reason

the performance is measured as the average accuracy over minibatches during training
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Table 4.6: Object Recognition Results. Shown are the mean and 1 standard deviation.

Model
CIFAR-10-C CIFAR-100-C

ACC ↑ ECE ↓ ACC ↑ ECE ↓

No corruption 95.3±0.2 2.4±0.1 76.4±0.2 4.8±0.1

DANN⋆ (Ganin et al., 2016) 81.7 - 61.1 -
UDA-SS.⋆ (Sun et al., 2019) 83.3 - 53 -

Source-only 57.8±0.7 28.2±0.4 36.4±0.5 19.4±0.9
AdaBN (Li et al., 2017a) 80.4±0.1 11.2±0.1 56.6±0.3 12.5±0.1
PL (Lee et al., 2013) 82.5±0.3 17.5±0.3 62.1±0.2 37.7±0.2
SHOT-IM (Liang et al., 2020)85.4±0.2 14.6±0.2 67.0±0.2 32.9±0.2
TENT (Wang et al., 2021) 86.6±0.3 12.8±0.3 66.0±0.4 25.7±0.4
FR (ours) 87.2±0.7 11.3±0.3 65.5±0.2 15.7±0.1
BUFR (ours) 89.4±0.2 10.0±0.2 68.5±0.2 14.5±0.3

Target-supervised 88.4±0.9 6.4±0.6 68.1±1.2 9.6±0.7

rather than after training has finished. In such a situation BUFR is not easily applicable

as we wish to achieve good performance with a few minibatches whereas when training

bottom-up parameters are more slowly trained.

Table 4.7 therefore compares FR with relevant SFDA baselines. For CIFAR-10-C we

note that FR achieves the best accuracy and calibration and is competitive on CIFAR-

100-C even when compared to TENT, a method specifically designed for this setting.

We again show full per-shift results in Appendix B.3.

Table 4.7: Online Results. Shown are the mean and 1 standard deviation.

Model
CIFAR-10-C CIFAR-100-C

ACC ↑ ECE ↓ ACC ↑ ECE ↓

AdaBN (Li et al., 2017a) 80.3±0.0 12.1±0.0 56.6±0.3 10.0±0.1
SHOT-IM (Liang et al., 2020)83.2±0.2 10.9±0.1 62.3±0.3 13.8±0.1
TENT (Wang et al., 2021) 81.8±0.2 11.5±0.1 63.1±0.3 14.3±0.1
FR (ours) 85.9±0.3 9.5±0.2 62.7±0.3 13.6±0.1

4.5.3 Few-shot Feature Restoration

So far we have largely examined synthetically generated corruptions or shifts applied to

a dataset. We use the CAMELYON17 dataset as an example of a real world measurement
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shift where histopathological images are taken using different scanners at different

hospitals. A ResNet-18 is trained on images from a single hospital and achieves 99.3%

accuracy, we then adapt models on the images from a different hospital. Table 4.8

shows results averaged over the 4 target domains (different hospitals).

Despite the fact that this dataset is an ideal candidate for entropy minimising SFDA

methods due to a high AdaBN accuracy (most pseudo-labels will be correct after up-

dating batch normalisation statistics) and only two possible classes (giving random

pseudo-labels a 50% chance of being correct), our methods still achieve competitive

accuracy when trained on all dataset samples.

More interesting in this case is how different methods respond when only a small

amount of data is available, as may be the case in a deployed system. Table 4.8 shows

that when we have 50 samples or fewer, only the feature restoration methods signif-

icantly improve over the AdaBN baseline that simply uses target rather than source

domain batch normalisation statistics (which happens for all methods during training).

These results show that feature restoration methods perform well in practice on a real

world measurement shift and that we achieve better data efficiency.

Table 4.8: CAMELYON17 accuracies for varying samples per class in the target domain.

Model 5 10 50 500 All(> 15k)

Source-only 55.8±1.6 55.8±1.6 55.8±1.6 55.8±1.6 55.8±1.6
AdaBN (Li et al., 2017a) 82.6±2.2 83.3±2.3 83.7±1.0 83.9±0.8 84.0±0.5
PL (Lee et al., 2013) 82.5±2.0 83.7±1.7 83.6±1.2 85.0±0.8 90.6±0.9
SHOT-IM (Liang et al., 2020) 82.6±2.2 83.4±2.5 83.7±1.2 86.4±0.7 89.9±0.2
FR (ours) 84.6±0.6 86.0±0.7 86.0±1.1 89.0±0.6 89.5±0.4
BUFR (ours) 84.5±0.8 86.1±0.2 87.0±1.2 89.1±0.8 89.7±0.5

We also analyse the effect of the bottom-up inductive bias for improving data efficiency

on EMNIST-DA. Figure 4.9a confirms the intuition of Section 4.4.2.2 that changing

parameters in the early layers should be sufficient to resolve many measurement shifts.

This figure shows that, when training bottom-up, training the first two blocks provides

almost all of the accuracy improvements. BUFR exploits this behaviour by initially

updating the early layers of a network which allows us to update fewer parameters in

order preserve learned structure in the later layers. Indeed, Figure 4.9b shows that FR

moves8 parameters in all layers a similar amount whereas Figure 4.9c shows that for

8The amount a parameter is moved is calculated by the Euclidean distance between parameter

values before and after adaptation.
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Figure 4.9: Bottom-Up Training Analysis. (a) BUFR accuracy during training on selected

EMNIST-DA corruptions. Dashed-grey lines indicate when the next block is unfrozen. (b,

c) Average Euclidean distance moved by parameters in each block when adapting gs

to gt using the same constant learning rate. (b) FR moves all parameters a similar

amount. (c) BUFR changes primarily the early layers.

BUFR it is primarily the early parameters that are altered.

The regularisation benefits of changing the ‘right’ few parameters using BUFR are

shown in Table 4.9. As the number of training samples reduces, BUFR begins to

outperform all baseline methods by a large margin (> 20%). In general, without this

bottom-up training, performance drops sharply as the amount of training data reduces.

In fact, with only 5 samples per class BUFR outperforms some baselines when using

all the data (400 samples per class). The more general question of which are the ‘right’

few parameters will motivate our investigations in Chapter 5.

Table 4.9: EMNIST-DA accuracy with varying

numbers of samples per class.

Model 5 10 20 50 400

Marg. Gauss. 49.3 49.9 50.4 50.7 50.6
Full Gauss. 55.4 59.7 61.0 63.3 68.3
PL 45.8 46.3 46.0 46.7 49.7
BNM-IM 50.5 51.5 53.0 54.7 61.4
SHOT-IM 48.3 51.7 51.2 54.7 73.4
FR (ours) 50.8 50.5 60.1 63.1 75.6
BUFR (ours) 78.0 82.3 83.8 84.9 86.2

Table 4.10: EMNIST-DA degree of restoration.

Model D

Source-only 3.2±0.0
AdaBN (Li et al., 2017a) 3.1±0.1
Marg. Gauss. (Ishii and Sugiyama, 2021) 2.9±0.0
Full Gauss. 2.0±0.0
PL (Lee et al., 2013) 2.6±0.0
BNM-IM (Ishii and Sugiyama, 2021) 2.5±0.1
SHOT-IM (Liang et al., 2020) 2.9±0.1
FR (ours) 1.8±0.0
BUFR (ours) 1.2±0.0

4.5.4 Further Analysis

To better understand how feature restoration works we perform several minor analyses

consisting of: examining the feature-space class-separation; quantifying the degree of
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(a) Source-only (19%) (b) SHOT-IM (67%) (c) FR (77%) (d) BUFR (83%)

Figure 4.10: t-SNE (Van der Maaten and Hinton, 2008) applied to the feature representations

of 5 classes from the EMNIST-DA crystals shift. Dark colours show the source data, light the

target. Model accuracies are shown in parentheses.

feature restoration; examining the semantic meaning of features, and a small ablation

study.

4.5.4.1 Feature-Space Class-Separation

We use t-SNE (Van der Maaten and Hinton, 2008) to see how latent feature represen-

tations cluster in the feature space, see Figure 4.10. Figure 4.10a shows that measure-

ment shifts can cause feature representations that were separately clustered in feature

space of the source domain (dark colours) to become poorly separated in the target do-

main (light colours). The effect of adapting on this measurement shift with an entropy

minimising technique (SHOT-IM) is shown in Figure 4.10b. Whilst minimising en-

tropy does better separate the classes we see that the feature representations are neither

fully separated nor returned to their original locations in the source domain feature

space. In contrast Figures 4.10c & 4.10d show that our feature restoration methods

both more homogeneously cluster the target domain representations and return them

to their original locations.

4.5.4.2 Quantifying the Degree of Feature Restoration

In Table 4.10 we quantify the degree to which features are restored using EMNIST-DA.

As this data is synthetically generated we can create paired source and target domain

data (identical L in Figure 4.1a). With this paired data we can calculate the average

pairwise distance over all domains,

D =
1
T

T

∑
t=1

1
N

N

∑
i=1
|gs(x

(i)
s )−gt(x

(i)
t )|, (4.5)
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where T is the number of target domains, x(i)s is a source domain (identity) image and

x(i)t the same image shifted in the target domain (e.g. colour change, noise added etc.),

and N the number of paired datapoints. Table 4.10 shows that our feature restoration

methods do actually restore the features more than baseline methods. That is, after

adaptation, neurons respond more similarly to data with the same underlying L when

using our methods. This shows quantitatively what we saw in Section 4.5.1 showing

the alignment of marginal distributions, but in this case for individual samples rather

than entire batches. In general, pure alignment methods (e.g. Full Gauss.) tend to

perform better on this metric than entropy minimising techniques which may find ways

to restore performance without restoring features.

4.5.4.3 Semantic Meaning of Features

Used to give the intuition behind feature restoration in Section 4.2, Figure 4.1b shows

a real experimental result using the EMNIST-DA grass shift. This figure is created by

explicitly aligning the marginal feature distributions in the first layer (rather than the

penultimate layer) for illustrative purposes. We see that a neuron that responds to white

horizontal edges on a black background in the source domain (left column) continues

responding to patterns of light and dark in the target domain before adaptation (middle

column). After aligning the marginal distribution (right column) using BUFR, a sense

of semantic meaning is restored to the feature so it again detects horizontal image

edges (purple edges on a green background).

4.5.4.4 Ablation Study

Table 4.11 shows an ablation study where we drop parts of the loss from Equation 4.3

and see how this affects performance. We experiment with only aligning the feature

distributions and not the logits (w/o logits), and with using the asymmetric KL di-

vergence (w/o DKL(P||Q)). We see that for the easier CIFAR-10-C task, these loss

components are not hugely important. However, as the number of classes increases in

CIFAR-100-C, both additionally constraining the feature space by aligning the logits

and using the symmetric KL divergence improves performance.
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Table 4.11: Ablation study on CIFAR-10-C and CIFAR-100-C.

Model CFR-10-C CFR-100-C

Ltgt w/o logits 86.7±0.2 62.3±1.3
Ltgt w/o DKL(P||Q) 86.5±0.3 61.5±0.2
Ltgt 87.2±0.7 65.5±0.2

4.6 Discussions

We end this chapter with some discussions on potential pitfalls with the feature restora-

tion approach and point to ideas from existing works that may inspire further explo-

ration in this direction.

Aligning the marginals may be insufficient. By aligning marginal distributions we

hope to restore the joint feature distribution, but this is not guaranteed unless features

are independent (and they aren’t). Whilst we found the alignment is often sufficient

to achieve good performance, there is potential for improvement if features can be

encouraged to be independent using disentanglement approaches (Bengio et al., 2013;

Burgess et al., 2018; Eastwood and Williams, 2018).

An alignment of the feature space distribution may not be unique. As a general the-

oretical point, it is not always possible to guarantee that aligning distributions gives the

individual sample alignment that we aim for. Two 2D standard Gaussian distributions

can be aligned in infinitely many ways due to to rotational symmetry. Whilst we can-

not provide theoretical guarantees that the alignment we learn is the optimal one, the

pairwise metric we use for quantifying the degree of feature restoration demonstrates

that, in practice, aligning the distributions does achieve better per sample alignment

than competing methods.

Feature distributions may change in the target domain. Similarly, our aim with

feature restoration is to restore the behaviour of feature detectors (units) in new do-

mains. However, it may be that restoring this behaviour does not mean total marginal

distribution alignment if the frequency with which a feature appears changes between

source and target domains. For example. if a feature detects eyes in images and a

new domain contains fewer faces that the source domain, we may still want to detect

eyes even though the distribution has changed. Whilst technically this violates our

domain shift assumptions in that the distribution of L changes (Figure 4.1a), this type
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of dataset shift is not uncommon. This presents an opportunity for further exploration

of other, non alignment based, methods to restore the behaviour of feature detectors

across changing domains.

Model selection. Like other works in UDA and SFDA we used a target domain val-

idation set to select model hyperparameters. In a real SFDA situation there would be

no such validation set available. This flaw in these methods has been gaining attention

with novel validation procedures (You et al., 2019) and new realistic benchmarks (Gul-

rajani and Lopez-Paz, 2021) being proposed.

4.7 Summary

In this chapter we investigated feature restoration as an approach to resolving domain

shift, specifically measurement shifts. By aligning marginal feature activation distri-

butions we restored model performance after a change in domain by encouraging the

same features to be extracted on the target domain as were learned on the source do-

main. We showed that our approach improved adapted model behaviour in the target

domain, particularly regarding improved calibration, and analysed the behaviour of

adapted models to gain a better understanding of why this approach works.

So far, in Chapter 3 we selected which parameters to train to model changes in style

(e.g. choosing to train style specific residual adapters) and in this chapter we used a

bottom-up inductive bias to improve performance, selecting to primarily update pa-

rameters in the early layers of feature extractors. In the final chapter we will explore

further how we might go about choosing which parameters to train as data changes

domains.



Chapter 5

Novel Approaches with Unit-level

Surprise

Shift Pattern Response

Low-level shift, 
e.g. new background or corruption

High-level shift,
e.g. unseen class

Units in early layers detect abnormal
input, i.e. are surprised. This propagates

Only units in later units are
surprised by their input 

Updating only the (weights of the) first
surprised units can restore normality

Updating only the (weights of the) first
surprised units can preserve structure

Figure 5.1: Patterns of unit-level surprise can be used to choose which few parameters

to update based on a shift in data distribution. The update response may change the

pattern which may in turn change the parameters to be updated by the response. Purple

units are unsurprised, yellow units surprised, blue indicates the weights to update.

In Chapter 3, motivated by model capacity tradeoffs (Goodfellow et al., 2016, Section

5.2), we saw how assigning a small subset of network parameters to model a shift in

style allowed us to improve performance in the low data regime. Similarly in Chap-

ter 4, motivated by maintaining knowledge through maintaining structure, we saw how

adapting some parameters much more than others is beneficial when data is limited

(specifically training bottom-up). That is, we have been working with the idea that

88
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good few-shot adaptation is achieved by updating some relatively small proportion of

model parameters.

However, whilst so far we have presented different methods for adaptation, we have

not considered the general question of which few parameters are best to update in

order to adapt quickly. This question of which parameters to update to reduce some

global error signal is a credit assignment problem - “who is responsible for this?” For

neural networks most commonly credit assignment is achieved using backpropagation

(Rumelhart et al., 1986) and then parameters are updated with stochastic gradient de-

scent.

In this chapter we examine the general question of which parameters are best to update

in a neural network depending on how the domain changes. We begin with an initial

analysis of how changes in unit-level activation distributions can be used to create

patterns of parameters that align with intuitions about who should update. We then use

this to create shift dependent learning behaviour and give an extensive reflection on

issues arising with this approach as motivation for next steps.

We consider specifically few-shot adaptation under domain shift as discussed in Chap-

ter 2 (Figure 2.1c) where both predictor data points and target labels are given. Fig-

ure 5.1 gives an overview of our approach to this type of problem. In particular a model

is trained on some data which then experiences some domain shift (E changes in Fig-

ure 2.1c), from this change we aim to detect which neurons are most ‘surprised’ by this

change and examine the patterns these neurons form. Finally, based on how the pat-

terns form, we develop and perform some response that selects a subset of parameters

to update in order to adapt to the changing data.

5.1 Related Work

The desire to create systems that can rapidly adapt on out of distribution data has led to

the development of many different techniques. As discussed, fast low data adaptation

is often achieved by changing a small number of model parameters such as the batch

normalisation statistics and parameters (Li et al., 2017a; Ishii and Sugiyama, 2021;

Wang et al., 2021). The related work we discuss focuses on two ways we might be able

to improve this adaptation, namely by learning or adapting neural network modules or

by taking inspiration from how biological systems solve these problems.
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5.1.1 Modularity, Modules, and Sparsely Changing Mechanisms

One approach to improving the generalisability of machine models as well as their abil-

ity to maintain knowledge and adapt quickly has been to take a causal view (Schölkopf

et al., 2012). Relevant to our work is the assumption that observed variables are created

by underlying modular and reusable causal mechanisms (Parascandolo et al., 2018).

Moreover, that real world changes in data distribution tend be caused by sparse changes

in these mechanisms (Bengio et al., 2020; Goyal et al., 2021). This is the Sparse

Mechanism Shift hypothesis, defined by Schölkopf et al. (2021) as: “Small distribution

changes tend to manifest themselves in a sparse or local way in the causal/disentangled

factorization i.e., they should usually not affect all factors simultaneously”. The key

insight of this assumption is that if networks can be learned such that they them-

selves capture these mechanisms in a modular way, then, given some small distribution

change, only a small subset of network parameters should need to update allowing for

fast few-shot adaptation and continual learning.

Outside of causality there has been substantial interest in investigating to what extent

neural networks are modular (Hod et al., 2021; Csordás et al., 2021), for interpretability

(Filan et al., 2021), and for improved systematic generalisation (Andreas et al., 2016;

D’Amario et al., 2021). The lottery ticket hypothesis (Frankle and Carbin, 2019; Chen

et al., 2021) suggests that certain sparse subsets of neurons (i.e. modules) are the most

important due to their initialisation. These can be trained in isolation to achieve close

to the full neural network’s performance. However, as the winning lottery tickets are

determined by random initialisation, there is little reason to believe that these subsets

will align with mechanism shifts in the real world.

Other methods such as FlexTune (Royer and Lampert, 2020) select different subsets of

network parameters, specifically different layers or blocks, to train depending on how

a dataset shifts. However, this approach requires searching over all layers or blocks of

a network which is neither scalable nor able to automatically select which parameters

to update based on the shift.

5.1.2 Biological Inspirations

Synaptic plasticity (Hebb, 1949; Citri and Malenka, 2008) refers to the ability of

synapses in the brain to change their synaptic strength over time. Drawing the loose

analogy between artificial and biological neurons this is analogous to the ability to
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change connection strengths (weights) between artificial neurons (as happens during

learning/training). Metaplasticity refers to the plasticity of synaptic plasticity (Abra-

ham and Bear, 1996; Abraham, 2008), that is, changing how plastic a neuron is i.e.

how much or how fast the synaptic strength can be modified. This allows adaptive

learning behaviour (Hulme et al., 2013; Wang and Tao, 2009). An example of analo-

gous metaplasticity-like behaviour in artificial networks would be changing the learn-

ing rates for specific neurons. Using this inspiration, if we are able to identify specific

units (ideally a small proportion of all units) that are most relevant for a given domain

shift, we can set these units to be more plastic (e.g. training these units more using

a higher learning rate) when adapting to the shift. In the brain metaplasticity is af-

fected by neuromodulators, that is, chemicals that regulate behaviour of populations of

neurons (Katz, 1999).

5.2 Unit-level Surprise

The approach we take in order to select which few parameters to update is based on

the intuition that if, after some domain shift, a unit sees features ‘similar’ to those seen

during pretraining then there is no need for it to update. This is somewhat similar to

the feature restoration idea from Chapter 4 where we aimed to update units in order

to restore the ‘same’ features after adaptation. However, here we ask which units

have ‘good’ behaviour before adapting and use this to select which units to update. In

order to do this we focus specifically on the unit-level, that is, examining each unit

individually rather than grouped together as layers or modules.

For each unit we calculate the (Bayesian) surprise (Itti and Baldi, 2009) by measur-

ing the difference between its activation distributions on source and target domains.

This quantity is designed to be high when the unit sees unusual activations (different

from those seen on the source domain) and low when it seems activations similar to

those seen during pretraining on the source domain. Henceforth we refer to this sim-

ply as the unit’s surprise, which is a somewhat overloaded term examined further in

Appendix C.1.

To calculate the surprise for a unit we store its 1D activation distribution under the

training data, P(A), and under the shifted data distribution, Q(A). We parameterise

these distributions exactly as in Section 4.4 using softly-binned histograms from which

we get 10 normalised bin counts for each unit, π
p
1 , . . .π

p
10 for P(A), and π

q
1, . . .π

q
10 for
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Figure 5.2: Examples of our histogram parameterisations of P(A), in blue, and Q(A),

in orange. When new data is received, the activation distribution changes, the more

different the distributions the higher the surprise. From left to right, the surprise values

s(A) are approximately 0.1, 0.2, 0.3, 0.4.

Q(A).12 From these distributions we calculate the surprise,

s(A) = DKL
(
Q(A;{πq

i }
10
i=1) || P(A;{πp

i }
10
i=1)

)
=

10

∑
i=1

π
q
i log

π
q
i

π
p
i
. (5.1)

This KL divergence measures the difference between P(A) and Q(A), it is 0 when the

distributions are identical and is large when they are very different. In particular we

can view this as a measure of how surprising the new activations are under a domain

shift for a specific unit. Figure 5.2 gives examples of distributions P(A) and Q(A) for

different units in a neural network and approximate surprise values.

5.2.1 Controlled Experimental Setup

To allow to us to understand the behaviour of unit-level surprise we use a simple and

controlled experimental set up. We train a 5 layer neural network with 3 convolutional

and 2 fully connected layers whose architecture is the same as shown in Table 4.3

(without batch normalisation layers). Initially this network is pretrained with 37 of

the 47 classes in (standard) EMNIST (Cohen et al., 2017), after which we choose 1

of 10 possible data distribution shifts from which we calculate the unit-level surprise

for all units in the network and from this design a response to adapt. Specifically we

use seven ‘low-level’ shifts from EMNIST-DA (Section 4.3) where we expect the early

layers of the network to need to update, and three ‘high-level’ shifts, where we expect

it to be preferable to update the later layers. We make use of dropout during this initial

1Note that P(A) is calculated once by running one forwards pass of the network after pretraining,

whereas Q(A) is calculated with each batch and changes during adaptation.
2For convolutions, P(A) and Q(A) are estimated using each spatial location of a feature map as one

sample of the activation, a.
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pretraining but not during adaptation as it complicates the propagation of surprise and

has limited effect on the results.

The seven shifts we select from EMNIST-DA are crystals, fog, Gaussian blur, grass, im-

pulse noise, sky and stripe. These are selected as they strongly affect the zero-shot ac-

curacy and intuitively can be resolved by adapting the early convolutional filters (which

can be roughly thought of as edge detectors). To create the high-level shifts we use

new classes, unseen during training. After pretraining on the first thirty seven EMNIST

classes we then choose 5 of the 10 unseen classes three times from the range [38,47]

to arrive at three high-level shifts: H1:[38,39,40,41,42], H2:[43,44,45,46,47], and

H3:[38,40,42,44,46].

5.2.2 Analysing Surprise Patterns

Conv1 Conv2 Conv3 FC1 FC2

0.00

0.02

0.04

0.06

0.08

0.10

(a) Low-level shift (crystals background)

Conv1 Conv2 Conv3 FC1 FC2

0.00

0.02

0.04

0.06

0.08

0.10

(b) High-level shift (unseen classes)

Figure 5.3: Patterns of surprise for different changes in data distribution. Yellow units

are highly surprised and dark blue units are unsurprised. (a) For low-level shifts surprise

is noticed in the early layers and this effect propagates through the rest of the network.

(b) For high-level shifts early layers are unsurprised (similar features) whereas the later

fully connected layers show surprise.

Armed with this controlled setup and the calculation of unit-level surprise, described

above, we can calculate the surprise values for each unit in our network and visualise

this as in Figure 5.3. The key observation of this process is that different shifts in the

data cause different patterns of surprise, in particular not all shifts are noticed at the

same level of abstraction which in turn motivates our design of an update rule that



Chapter 5. Novel Approaches with Unit-level Surprise 94

handles different shifts at different levels (Section 5.3).

On further analysis we can also offer some explanation of the patterns that arise. In

Figure 5.3a after pretraining we expect the early convolutional filters to detect some-

thing like black and white edges, then after receiving new data where the edges are

now purple and green these filters are surprised by this change. As the early filters

have large changes in activation distribution this effect naturally propagates through to

the later units. Similarly in Figure 5.3b when an unseen class is received, the black

and white edges are still present in the data (giving a similar activation distribution)

but when combining the image features in the fully connected layers the network sees

some new combination and so surprise is only noticed later in the network.

5.3 Surprise Based Responses

Now that the units of our neural network are equipped with the ability to measure sur-

prise and hence create data dependent effects, how might we use this to better update

the network’s parameters in the low data regime? We create an update rule where the

incoming weights to a unit update only if the unit is sufficiently surprised (above some

threshold). However, due to the propagation of surprise effect discussed in Section 5.2

we also add a condition that, in order for a unit to update, the parent units (units con-

nected to the unit in question from the previous layer) must be sufficiently unsurprised

(below some threshold). The intuition behind this is a credit assignment approach

where a unit asks, “Am I responsible for this? If the situation is the same as before, no

need for me to update,” and, “Are there updates happening on the preceding units? In

which case, hold tight this is being dealt with.”

To formally define this rule we consider a ‘child’ unit in layer l with index j and

surprise c j as defined in Equation 5.1, in the previous layer, l− 1, we consider some

‘parent’ of this unit with index i and surprise pi, the parent is connected to the child

with some weight wi j.

To get a single value representing the surprise of all parent units we aggregate the

surprise of all parents of the the child unit as p̄ j, which is a weighted sum of the parent

surprises,

p̄ j = ∑
i

|wi j|
∑k |wk j|

· pi , (5.2)
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where we normalise the weight values, |wi j|
∑k |wk j| , in order to get a comparable scale across

all child units in a layer.

This then gives a single value for the (child) unit’s own surprise, c j, and the parent sur-

prises, p̄ j. We can then create our update rule by thresholding these values, specifically

the update for weight wi j is

wi j := wi j− I[c j > α]I[p̄ j < β] ·η∇wi jL , (5.3)

where I[c j > α] and I[p̄ j < β] are indicator functions that are 1 when the threshold

condition is true and 0 otherwise, with α and β set experimentally. η is the learning

rate, and L is the cross-entropy loss function. This hard gating ensures the weight

only updates if the child unit is sufficiently surprised and the parent units are not and is

diagrammed in Figure 5.4. We note analogies with metaplasticity in that only certain

neurons will be trained at any one time based on how surprised they are. Additionally

the I[p̄ j < β] term can be linked to neuromodulation, sending a signal that prevents

subsequent units from updating.

p1

p2

p3

c1
w11

w21
w31

Figure 5.4: Update rule schematic. The thick weight connections update only if the

aggregated parent surprise, p̄1, is low enough and the child surprise, c1, is high enough.

To evaluate, we compare our update rule against two other possible responses to a

change in data distribution to get three possible approaches:

1. SGD. Use stochastic gradient descent (SGD) to update all parameters.

2. FlexTune (Royer and Lampert, 2020). Fine-tune every individual layer sep-

arately and select the best performing layer. This serves as an upper-bound on

single layer performance.
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Table 5.1: 5-shot accuracy when training: all layers (SGD); single layers using Flex-

Tune (Royer and Lampert, 2020); using our surprise-based update rule. We average

over low level, high level and all shifts to get the rows of the table.

Conv1 Conv2 Conv3 FC1 FC2 SGD FlexTune Upd. Rule

Low 82.7±0.4 70.2±1.2 61.4±0.2 56.3±0.2 51.5±0.3 71.3±2.1 82.7±0.4 82.9±0.5
High 0.0±0.0 0.3±0.5 25.4±3.8 80.6±4.6 94.5±0.9 74.4±5.2 94.5±0.9 79.2±4.2

All 57.9±0.3 49.3±0.8 50.6±1.2 63.6±1.2 64.4±0.3 72.2±2.9 86.3±0.5 81.8±1.2

3. Update rule based on unit-level surprise. Use the update rule described above

in Equation 5.3, summarised as: update only if you are surprised and your par-

ents are not.

5.3.1 Implementation details

To implement the possible responses described above we pretrain using 2000 samples

per class with held out validation and test sets of 400 samples per class each. We then

evaluate the sample efficiency of the different responses by testing 2, 5, 10, 20 and

50 samples per class, or shots. We also experiment with using all 2000 samples as a

baseline.

We optimise our network using stochastic gradient descent with a momentum of 0.9

and a batch size of 256. Initially the network is pretrained for 150 epochs on the

identity (black and white) data with a learning rate of 0.01. During adaptation we

make use of early stopping training for a maximum of 100 epochs with a patience

of 10, stopping based on the network accuracy. Adaptation uses a learning rate of

0.1 except when training all network parameters with SGD, this situation requires a

lower learning rate of 0.01 to avoid divergence as SGD updates more parameters than

other responses. We find setting α and β in Equation 5.3 to 0.01 to be effective values

without being overly specific; whilst one could set α and β differently for each layer

and dataset shift the search space grows very quickly and it becomes easy to overfit

these hyperparameters to a specific set up.

The full per-shift results of these experiments are given in Appendix C.2 where each

experiment is run over 3 seeds to report a mean and standard deviation.
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5.3.2 Analysing Different Responses

We now examine the quantitative performance of the different responses, firstly in

the 5-shot setting with results given in Table 5.1. Looking at the first five columns

which train individual layers we see clearly that low level shifts are best dealt with by

adapting the early layers and high level shifts are best dealt with in the later layers.

That is, like Royer and Lampert (2020) we find that fine-tuning the last layer is not

always the optimal thing to do. What’s more, this aligns with both the intuitions and

the surprise patterns given in Section 5.2 (and Figure 5.3).

Looking at the last three columns of Table 5.1 which show each of the responses we

consider, we see that FlexTune performs the best on average (86.3%). However, this

method is clearly biologically implausible and scales extremely poorly with network

depth; if we do not know in advance what type of shift will occur3, one must train

every layer individually and decide which is the best layer to use based on a validation

set accuracy. So if we do not have a priori knowledge of the type of shift that will occur

and do not want to search over every possibility using an oracle-like validation set our

update rule will give the best performance (81.8%). That is, our surprise based rule

can automatically select which few parameters to update in a data dependent manner.

To analyse why our update rule performs much better than SGD we visualise how

much the parameters are moved by both SGD and our update rule. We calculate the

Euclidean distance moved between parameter values before and after adaptation and

average these distances over each layer to create the plots in Figure 5.5. Figures 5.5a

and 5.5b show that SGD moves parameters in all layers approximately equal distances

and changes very little between different shift types. This underlines that standard

backpropagation is not a sufficiently effective credit assignment technique for select-

ing which few parameters to update for a specific shift. On the other hand, Figures 5.5c

and 5.5d show that our method exhibits clear data dependent behaviour, selecting spe-

cific parameters to update which align with the preferred FlexTune layers for adapting

(updating the early convolutional layers for low level shifts and the fully connected

layers for high level shifts) . Whilst parameters are moved different amounts by differ-

ent methods, from Table 5.1 it seems to be the case that selecting which few parameters

to update is the more important behaviour over how far the parameters are moved.

3If we know in advance what type of shift will occur we can select to train the first convolutional

layer for low level shifts and the last fully connected layer for high level shifts.
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Figure 5.5: Mean Euclidean distances moved by units in each layer. (a) using SGD for

a low level shift (crystals background shift), (b) using SGD for a high level shift (H1, 5

unseen classes), (c) our update rule for the same low level shift and (d) our update rule

for the same high level shift.

Table 5.2: Accuracy for different numbers of data shots. Results averaged over all shifts.

2 5 10 20 50 2000

SGD 60.0±1.9 72.2±2.9 78.9±0.5 82.6±0.2 86.1±0.3 92.1±0.1
FlexTune 82.6±0.7 86.3±0.5 87.8±0.4 89.2±0.2 90.4±0.2 92.5±0.0
Upd. Rule 66.3±2.5 81.8±1.2 86.2±0.6 88.2±0.4 89.7±0.1 92.4±0.0

To complete our understanding, we examine the results for different numbers of shots

(samples per class) in Table 5.2. Here we see that when we have all the data (2000

shots) the importance of which parameters to update fades away with all methods per-

forming similarly, this is unsurprising as SGD is known to work well given sufficient

data. However, as the number of shots reduces the importance of selecting the correct

few parameters to update increases, with both our method and FlexTune significantly

outperforming SGD for 5-50 shots. In the 2-shot scenario FlexTune is by far the best,

Table C.2 (Appendix C.2) shows this is largely because our update rule is outperformed

on high level shifts where it tends to update the penultimate layer (Figure 5.5d) rather

than the last layer. This again shows that selecting which few parameters to update

really matters when data is limited.

5.4 Challenges Arising and Directions for Further In-

vestigation

We have seen that using unit-level surprise to update a small number of parameters,

dependent on how data shifts, is able to provide large improvements for few-shot per-
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formance. However, we have also seen that our method is not necessarily optimal in

which parameters it selects. In this section we reflect on the main challenges encoun-

tered during the development of these techniques and difficulties in extending them to

more complex scenarios.

5.4.1 Reflections on Network Modularity

Our initial intent with unit-level surprise was to discover different modules4 that would

adapt to different changes in the data (Hod et al., 2021). We find that with our set

up such modules do not arise, with low level shifts surprising almost all units in the

network (Fig. 5.3a) and high level shifts surprising almost all units in fully connected

layers (Fig. 5.3b). This property additionally causes our update rule to update entire

single layers rather than a more modular and more sparse set of units.

Upon reflection, it seems clear that expecting modules to arise that also align with the

unseen domain shifts in our dataset is asking too much. For example, when pretraining

only on black and white characters, why would modules emerge that separate colour

from other features (as would be needed for background shifts such as crystals and

sky)? Indeed, this leads us to ask if it is ever possible to learn an appropriate modular-

isation without explicitly optimising for this property while pretraining over datasets

containing multiple different shifts/environments.

To learn modules that align with changes in data distribution we could look for inspira-

tion in the ideas of sparsely changing causal mechanisms. Indeed, Bengio et al. (2020)

explicitly use these ideas to motivate a meta-learning approach for training neural net-

works which optimise for adaptation speed as a proxy for few parameters needing to

update. This presents a way in which unit-level surprise, or some similar quantity,

could be used to learn more modular networks - by using the number5 of surprised

units as an alternate proxy score for correctly modularising knowledge that is a more

direct measure of the number of parameters needing to be updated.

4We consider ideal modules to be sparse subsets of units that are not necessarily restricted to single

layers and perform some subtask relevant to the overall task (in our case character classification).
5A continuous proxy can be used for differentiability.
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5.4.2 Reflections on Unit-Level Surprise

To our minds, the most interesting part of our approach is the general use of unit-

level information for improving credit assignment. The specificities of our surprise

calculation and update rule design are less important and we now consider alternative

methods that could be investigated.

5.4.2.1 Alternative Unit-Level Information

The fact that our surprise-based update rule does not always update the ‘best’ units

(Table 5.1) motivates an exploration of alternative unit-level information or different

measures of surprise. For example, we could use parameter uncertainty and select to

optimise the parameters which have highest uncertainty (Jospin et al., 2020; Aitchison

et al., 2021). Alternatively, if working in a continual learning situation, we could use

task importance (Kirkpatrick et al., 2017; Zenke et al., 2017) to help select which

parameters to update.

Many of the possible pitfalls when using marginal feature activation distributions, dis-

cussed in Section 4.6, remain when using unit-level surprise. In particular, changes in

the frequencies with which certain features appear in source and target domains may

cause changes in the marginal activation distributions that should not cause parameter

updates. Alternative ways of measuring unit-level surprise that can account for some

of these situations could help us to design a more general approach. For example,

sample-wise calculations of surprisal, or a measure of surprise that allows for surprise

decreases as well as surprise increases.

5.4.2.2 Making Better Use of Unit-Level Surprise

Figure 5.5 shows that our method tends to update parameters from a single network

layer. Since we do not explicitly minimise unit-level surprise, surprised units tend

to stay surprised during training meaning aggregated parent surprise never gets suf-

ficiently small to allow child units to update. One possible solution to this problem

would be to gradually update the source domain marginal distribution, P(A), with

samples from the target domain marginal distribution, Q(A), for units that update. This

allows that if a domain shift occurs and we receive large amounts of data in the new

domain, units that update using our update rule (Equation 5.3) will gradually become

unsurprised allowing later units to update.
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One challenge with these hand designed tweaks to calculating and learning surprise is

that designing only necessary changes in the approach is difficult. This is because we

do not know (without a combinatorial search) which parameters are optimal to update

in any given situation, meaning we can only compare approaches empirically (i.e. us-

ing few-shot accuracy rather than hypothesising new approaches based on evidence).

A better understanding of the roles that individual units play (Olah et al., 2018; Goh

et al., 2021) may also provides us with inspiration and intuition about which units

should update. Another solution is to try and avoid hand designing update rules en-

tirely. In particular, meta-learning optimisers that make use of unit-level information

(Andrychowicz et al., 2016; Ravi and Larochelle, 2017).

5.5 Summary

The methods presented in this thesis have largely handled few-shot data by updating

some few model parameters. In this chapter we turned to the question of which few

parameters we should update when an unknown dataset shift occurs. We examined the

use of unit-level information for this task, in particular unit-level surprise, measuring

differences in source and target domain marginal activation distributions. We showed

that patterns of unit-level surprise often align with our intuitions about which units

should update and can detect changes in data distribution at different levels of abstrac-

tion. We proposed a simple surprise based update rule that provided more granular

credit assignment than standard backpropagation allowing us to update fewer parame-

ters to achieve better few-shot performance.



Chapter 6

Conclusion

This thesis has examined various aspects of neural network behaviour under changing

domains. Initially, we demonstrated the practical value of modelling new domains (or

styles) when only limited data is available for animation in computer graphics. We then

explored specific domain shifts that can cause drastic reductions in the performance of

a trained model and proposed a model-based approach for recovering original model

behaviours by restoring features. We additionally investigated which parameters are

most affected by a change in data distribution, and used this to analyse different credit

assignment approaches and create dataset shift dependent adaptation.

Motivated by specific data generating assumptions (Chapter 2), all of our investiga-

tions have worked to alter learned latent features at varying levels of abstraction. The

residual adapters and FiLM parameters of Chapter 3 create style specific behaviour

by modulating latent style agnostic features learned by training over multiple styles.

In Chapter 4, our feature restoration approach explicitly aligns marginal distributions

of the latent features extracted by source and target domain feature extractors. We

directly measure changes in latent feature distributions to select which parameters to

update when using unit-level surprise in Chapter 5.

The alignment of feature distributions, the minimisation of the entropy of representa-

tions/predictions, and the reduction of surprise, are all examples of general heuristics

that allow well initialised models to learn without the need for large amounts of new

labelled data. We believe that the use of such heuristics will be required for the devel-

opment of better artificially intelligent models that can learn continually and rapidly

with limited supervisory input. It is our hope that our contributions on the applica-
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tion, implementation and analysis of these heuristics will help with some small part

of the journey towards the better understanding, and potentially creation, of intelligent

systems.

6.1 Future Work

The ways in which we have been thinking about changing domains are also applica-

ble to several other open problems in artificial intelligence and machine learning. To

conclude the thesis, we link together these areas and suggest ways in which we might

wish to think about them.

Using changing domains to understand the world. In Chapter 3, we used a data-

driven definition for separating latent data generating variables, along with the avail-

ability of data in multiple domains (styles), to learn style/domain agnostic represen-

tations of the data. In Chapter 5 we discussed work on sparse mechanism shifts

(Schölkopf et al., 2021) and again found the necessity for training over multiple do-

mains to learn domain invariant representations (Arjovsky et al., 2019; Geirhos et al.,

2020). This raises the broader question of can we use changing domains (environ-

ments) to extract some (potentially causal) representation of the world? An embodied

agent acting in the real world experiences constant gradual environmental changes,

e.g. changes in lighting, parallax/viewpoint and temperature. In particular, can we use

these changes to extract invariant representations that represent useful concepts for

adaptively acting in the world (learning L in Figure 2.1c)?

Continual and lifelong learning If we are to make use of such constantly changing

domains we must create systems that can learn continually. In particular we both

wish to learn good lifelong shared representations, and be able to modulate or utilise

the representations for specific tasks by learning in an online manner. The learning

of good representations that can be shared across domains is discussed in the previous

paragraph, but choosing which representations to maintain, which to update, and which

to use for a given task requires further methods and analysis.

The role of scale. Indubitably some of the most impressive machine learning results

come from systems that have been designed to leverage compute at immense scale

(Devlin et al., 2019; Brown et al., 2020; Radford et al., 2021). Learning at scale,

particularly with multi-modal/multi-domain data (Ramesh et al., 2021) (Radford et al.,

2021), is able to create remarkable behaviours and is beginning to show improvements



Chapter 6. Conclusion 104

on out of distribution datasets (Geirhos et al., 2021). To what extent the intuitions and

analyses explored in this thesis are relevant for such large scale models, and how to go

about adapting these approaches to work with these systems, is an open question. On

the other hand, perhaps Sutton’s bitter lesson, that methods that leverage compute will

outstrip carefully designed methods that leverage human knowledge and insight, will

continue to hold water (Sutton, 2019).

How should we perform credit assignment in neural networks? Almost all of the

neural network works cited in this thesis train their networks using backpropagation of

some global error signal, along with some optimiser. This type of credit assignment

(Minsky, 1961), as it applies to neural networks parameters, is not modular (Caporale

and Dan, 2008) and thought to be biologically implausible (Lillicrap et al., 2020). Au-

tomatically selecting which parameters to update dependent on the task and the data, in

order to update learned representations efficiently whilst maintaining as much relevant

information as possible, may be achievable with backpropagation or may require new

ideas. For example, the creation of backpropagation alternatives (Lansdell et al., 2020;

Millidge et al., 2020) or the learning of local update rules (Löwe et al., 2019; Gregor,

2020).
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Appendix A

Style Modelling for Animation

This appendix contains further information on the data we use for style modelling and

how it was collected.

A.1 CMU Few-Shot Dataset

The first table in this appendix, Table A.1, shows the styles used for few-shot style

modelling along with the number of training frames and locomotion styles available

for each style.

A.2 The 100Style Dataset

The next table, split over two pages, contains frame counts and additional information

for each of the styles in the 100STYLEdataset (Table A.2, Table A.3).

A.2.1 Motion Capture Scripts

We additionally provide the motion capture scripts used by the actor for each of the 100

styles collected. Note that the ‘Backwards Walk’ script is identical to the ‘Forwards

Walk’ script but walking backwards. Similarly the ‘Backwards Run’ script is identical

to the ‘Forwards Run’ script but running backwards. We do not provide a script for

idling with the only instruction being to stand in the centre of the motion capture space

for around 15 seconds idling in a posture of the style being captured. See Tables A.4,

A.5, A.6, A.7 & A.8.
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Table A.1: Unmirrored frame counts and locomotion cycles for few-shot styles.

Style Number of Frames Number of Locomotion Cycles Symmetric

Balance 1491 12 Yes
Bent Forward 464 6 Yes
Bent Knees 182 2 Yes
Bouncy 304 4 No
Cat 197 2 Yes
Chicken 56 1 Yes
Cool 244 3 Yes
Crossover 230 2 Yes
Crouched 310 4 Yes
Dance 680 9 No
Dinosaur 527 5 Yes
Drag Leg 412 5 No
Dragon 125 1 Yes
Drunk 431 7 Yes
Duck Foot 258 3 Yes
Elated 67 1 Yes
Empi 234 1 Yes
Frankenstein 293 2 Yes
Gangly 493 7 Yes
Gedanbarai 294 2 Yes
Ghost 124 2 Yes
Graceful 323 6 Yes
Heavyset 417 4 Yes
Heiansyodan 95 1 Yes
Hobble 143 2 No
Hurt Leg 455 4 No
Jaunty 78 1 Yes
Joy 138 2 Yes
Lean Right 302 4 No
Left Hop 455 8 No
Legs Apart 186 2 Yes
Mantis 212 5 Yes
March 213 2 Yes
Mawashigeri 342 1 Yes
Monkey 103 2 Yes
Oiduki 228 1 Yes
On Toes Bent Forward 390 5 Yes
On Toes Crouched 591 8 Yes
Painful Left Knee 411 5 No
Penguin 183 6 Yes
Pigeon Toed 249 3 Yes
Prarie Dog 123 3 Yes
Quail 55 2 Yes
Roadrunner 665 17 Yes
Rushed 78 2 Yes
Sneaky 314 2 Yes
Squirrel 129 9 Yes
Stern 958 19 Yes
Stuff 97 2 Yes
Stumble 66 1 Yes
Swing Shoulders 259 3 Yes
Syutouuke 182 1 Yes
Wild Arms 161 2 Yes
Wild Legs 211 2 Yes
Wounded Leg 986 25 No
Yokogeri 135 1 No
Zombie 2241 25 Yes
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Table A.2: Unmirrored frame counts for styles in the 100STYLE dataset, 1 of 2.

Style Name Number of Frames Stochastic Symmetric

Aeroplane 39815 No Yes
Akimbo 35919 No Yes
Angry 25836 No Yes
ArmsAboveHead 32734 No Yes
ArmsBehindBack 34573 No Yes
ArmsBySide 34605 No Yes
ArmsFolded 35479 No No
Balance 50215 No No
BeatChest 35766 No Yes
BentForward 34899 No Yes
BentKnees 39058 No Yes
BigSteps 32162 No Yes
BouncyLeft 35347 No No
BouncyRight 35779 No No
Cat 45664 No Yes
Chicken 37171 No Yes
CrossOver 49445 No Yes
Crouched 35961 No Yes
CrowdAvoidance 45536 Yes Yes
Depressed 46082 No Yes
Dinosaur 44159 No Yes
DragLeftLeg 47100 No No
DragRightLeg 47079 No No
Drunk 40813 Yes Yes
DuckFoot 53656 No Yes
Elated 30203 No Yes
FairySteps 61085 No Yes
Flapping 29954 No Yes
FlickLegs 54801 No Yes
Followed 33129 Yes Yes
GracefulArms 35560 No Yes
HandsBetweenLegs 34031 No Yes
HandsInPockets 35352 No Yes
Heavyset 36616 No Yes
HighKnees 47754 No Yes
InTheDark 51173 Yes Yes
KarateChop 44645 No Yes
Kick 49531 No Yes
LawnMower 39812 No Yes
LeanBack 38295 No Yes
LeanLeft 42458 No No
LeanRight 44261 No No
LeftHop 19980 No No
LegsApart 43386 No Yes
LimpLeft 49085 No No
LimpRight 43484 No No
LookUp 41732 No Yes
Lunge 40767 No No
March 36955 No Yes
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Table A.3: Unmirrored frame counts for styles in the 100STYLE dataset, 2 of 2.

Style Name Number of Frames Stochastic Symmetric

Monk 43483 No No
Morris 35172 No Yes
Neutral 39459 No Yes
Old 68594 No No
OnHeels 35905 No Yes
OnPhoneLeft 34928 No No
OnPhoneRight 37811 No No
OnToesBentForward 35340 No Yes
OnToesCrouched 38596 No Yes
PendulumHands 37721 No Yes
Penguin 67976 No Yes
PigeonToed 56513 No Yes
Proud 34784 No Yes
Punch 35338 No No
Quail 43698 No Yes
RaisedLeftArm 30515 No No
RaisedRightArm 32890 No No
RightHop 19916 No No
Roadrunner 29006 No Yes
Robot 53326 No Yes
Rocket 34272 No Yes
Rushed 21238 No Yes
ShieldedLeft 32339 No No
ShieldedRight 33021 No No
Skip 32118 No Yes
SlideFeet 44216 No Yes
SpinAntiClock 31379 No No
SpinClock 30843 No No
Star 38114 No Yes
StartStop 81345 No Yes
Stiff 46598 No Yes
Strutting 43946 No Yes
Superman 32435 No No
Swat 29451 No No
Sweep 43930 No No
Swimming 34603 No Yes
SwingArmsRound 45382 No Yes
SwingShoulders 45826 No Yes
Teapot 31942 No No
Tiptoe 36052 No Yes
TogetherStep 63544 No Yes
TwoFootJump 28476 No Yes
WalkingStickLeft 43619 No No
WalkingStickRight 44112 No No
Waving 39756 Yes Yes
WhirlArms 39114 No Yes
WideLegs 43191 No Yes
WiggleHips 63231 No Yes
WildArms 38409 No Yes
WildLegs 51699 No Yes
Zombie 41904 No Yes
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Table A.4: Forwards Walk Mocap Script.

Gait: Walk Forward

Begin T-Pose in centre
Walk straight forward to edge of mocap area
Turn 180° and walk straight to other edge
Walk in 1 clockwise diamond
Turn and walk 1 anticlockwise diamond
Walk one figure 8 – begin by turning to left
Walk one figure 8 – other direction
Walk one large circle clockwise
Walk one large circle anticlockwise
Walk straight back to centre and stop
Turn 90° left, walk to left side and stop
Turn 90° right, walk to corner and stop
Walk back to centre and stop
Walk one small circle clockwise
Walk one small circle anti-clockwise
Return to centre and T-Pose

Table A.5: Forwards Run Mocap Script.

Gait: Run Forward

Begin T-Pose in centre
Run straight forward to edge of mocap area
Turn 180° and run straight to other edge
Run in 1 clockwise diamond
Turn and run 1 anticlockwise diamond
Run one figure 8 – begin by turning to left
Run one figure 8 – other direction
Run one large circle clockwise
Run one large circle anticlockwise
Run straight back to centre and stop
Turn 90° left, run to left side and stop
Turn 90° right, run to corner and stop
Run back to centre and stop
Run one small circle clockwise
Run one small circle anti-clockwise
Return to centre and T-Pose

Table A.6: Sidestep Walk Mocap Script.

Gait: Sidestep Walk

Always face out from the centre
Begin T-Pose in the centre
Side walk to edge of mocap area
Side walk in clockwise diamond
Side walk in anti-clockwise diamond
Side walk in circle clockwise
Side walk in circle anticlockwise
Side walk left and stop
Side walk right and stop
Return to centre

Table A.7: Sidestep Run Mocap Script.

Gait: Sidestep Run

Always face out from the centre
Begin T-Pose in the centre
Side run to edge of mocap area
Side run in clockwise diamond
Side run in anti-clockwise diamond
Side run in circle clockwise
Side run in circle anticlockwise
Side run left and stop
Side run right and stop
Return to centre
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Table A.8: Transitions Mocap Script.

Gait: Transitions

Aim to capture all transitions
Begin T-Pose in centre
While moving in random directions
Forwards walk to forwards run and back
Forwards walk to backwards walk and back
Forwards walk to backwards run and back
Forwards walk to side walk and back
Forwards walk to side run and back
Forwards run to back walk and back
Forwards run to back run and back
Forwards run to side walk and back
Forwards run to side run and back
Back walk to back run and back
Back walk to side walk and back
Back walk to side run and back
Back run to side walk and back
Back run to side run and back
Side walk to side run and back
Return to centre and T-pose
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Feature Restoration

B.1 Datasets

Section 4.3 described the EMNIST-DA dataset created for feature restoration and unit-

level surprise investigation. In this section we briefly describe the other preexisting

datasets we use to evaluate feature restoration.

The simplest datasets used are based on MNIST. MNIST-M (Ganin et al. (2016), Fig-

ure B.1) combines MNIST digits with random background patches from BSDS500 (Ar-

belaez et al., 2011) to create a single target domain and MNIST-C (Mu and Gilmer

(2019), Figure B.2) contains 15 corruptions of the standard MNIST data, creating 15

possible target domains. For both datasets the source data is standard MNIST with both

pretraining and adaptation performed on data from the MNIST training split.

For more complex image recognition we use common corruptions of CIFAR datasets

(Krizhevsky, 2009), CIFAR-10-C and CIFAR-100-C (Hendrycks and Dietterich (2019),

Figure B.3). CIFAR-10-C has 10 possible object classes and CIFAR-100-C 100. The

source domain is uncorrupted CIFAR-10 or CIFAR-100 with each of the 19 corruptions

forming one possible target domain. As with EMNIST-DA, models are trained on the

training set of CIFAR-10/CIFAR-100 and adapted to corruptions of the test set.

To demonstrate measurement shift in the real world we use CAMELYON17 (Bandi et al.

(2018), Koh et al. (2021), Figure B.4), a dataset for classifying histopathological im-

ages taken from 5 different hospitals. The aim is to detect the presence (or lack) of

tumorous tissue. A source model is trained on data from a single hospital (hospital 3)

with each remaining hospital providing one target domain.

131



Appendix B. Feature Restoration 132

Figure B.1: Top: MNIST examples. Bottom: MNIST-M examples.

Figure B.2: 15 different MNIST-C corruptions.

Figure B.3: 19 different CIFAR corruptions. The same corruptions are used for CIFAR-

10-C and CIFAR-100-C.

Figure B.4: CAMELYON17 examples. Each column is a different hospital. Top row: no

tumour tissue. Bottom row: tumour tissue.
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B.2 Activation Distributions

This appendix shows source and target marginal feature and logit distributions before

adaptation for EMNIST-DA (Figure B.5) and CIFAR-10-C (Figure B.6). Note that for

CIFAR-10-C source distributions tend to be bimodal whereas target distributions tend

to be unimodal before adaptation. With a view of hidden units as feature detectors,

the two modes of the source distributions can be intuitively understood as whether a

feature is detected (the unit is ‘on’) or not (the unit is ‘off’). Figure B.7 shows the

alignment of the marginals after adaptation for different SFDA methods on CIFAR-

10-C. Figure 4.5 in Section 4.5.1 showed the equivalent alignment for EMNIST-DA.

Whilst Figure B.7 also shows that our BUFR method aligns distributions more closely

than other methods, for CIFAR-10-C it seems that some distribution alignment is more

important for achieving reasonable accuracy than for EMNIST-DA since the marginal

distributions are more closely aligned even when this is not optimised for directly (as

in AdaBN and SHOT-IM).

(a) Feature distributions (b) Logit distributions

Figure B.5: Histograms of 6 marginal distributions using the EMNIST-DA stripe shift.

The blue curves are the saved marginal distributions under the source data (identity).

The orange curves are the marginal distributions under the target data (stripe) before

adaptation. (a) Marginal feature activation distributions. (b) Marginal logit activation

distributions. DSKL is the symmetric KL divergence.
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(a) Feature distributions (b) Logit distributions

Figure B.6: Histograms of 6 marginal distributions using the CIFAR-10-C impulse-noise

shift. The blue curves are the saved marginal distributions under the source data (iden-

tity). The orange curves are the marginal distributions under the target data (impulse-

noise) before adaptation. (a) Marginal feature activation distributions. (b) Marginal logit

activation distributions. DSKL is the symmetric KL divergence.

(a) AdaBN (b) SHOT-IM (c) BUFR

Figure B.7: Histograms showing distribution alignment on the CIFAR-10-C impulse-noise

shift. The blue curves are the saved marginal distributions under the source data (iden-

tity). The orange curves are the marginal distributions under the target data (impulse-

noise) after adaptation. (a) AdaBN only slightly aligns the marginal distributions. (b)

SHOT-IM partially aligns the marginal distributions despite not optimising for alignment.

(c) BUFR matches the activation distributions very closely.
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B.3 Extended Results

This appendix provides full, per-shift, results for each of the SFDA methods used for

MNIST-C, MNIST-M, EMNIST-DA, CIFAR-10-C, and CIFAR-100-C.

B.3.1 MNIST-C full results

Tables B.1 and B.2 show the accuracy and ECE results for each individual corruption

of the MNIST-C dataset. As the translate corruption violates the assumptions under-

lying the use of a fixed classifier h, we additionally show average results without this

corruption. Without translate all methods achieve very high accuracy (≥ 95%).

Table B.1: MNIST-C accuracy (%) results. Shown are the mean and 1 standard deviation.

Src-only AdaBN PL SHOT-IM SHOT FR BUFR

Brightness 84.8±11.4 99.4±0.0 99.5±0.0 99.4±0.1 99.5±0.1 98.7±0.1 99.2±0.1
Canny Edges 72.2±0.8 91.0±0.7 96.2±1.0 98.1±0.1 98.6±0.1 97.8±0.1 98.5±0.0
Dotted Line 98.6±0.2 98.8±0.2 99.3±0.1 99.4±0.1 99.4±0.1 98.6±0.1 99.1±0.0
Fog 30.1±12.5 93.9±1.9 99.3±0.0 99.4±0.1 99.5±0.0 98.6±0.1 99.2±0.0
Glass Blur 88.9±2.3 95.3±0.3 97.8±0.1 98.2±0.1 98.3±0.0 97.2±0.1 97.9±0.0
Impulse Noise 95.2±0.6 97.9±0.1 98.4±0.1 98.7±0.1 98.9±0.1 97.8±0.0 98.6±0.0
Motion Blur 85.6±3.9 97.3±0.4 98.8±0.1 99.1±0.1 99.2±0.1 98.1±0.1 98.8±0.1
Rotate 96.7±0.1 96.7±0.0 97.7±0.1 98.4±0.1 98.8±0.0 97.5±0.1 97.9±0.1
Scale 97.2±0.1 97.2±0.1 98.7±0.1 99.1±0.0 99.2±0.0 98.0±0.0 98.7±0.2
Shear 98.9±0.1 98.9±0.0 99.0±0.0 99.1±0.0 99.2±0.0 98.3±0.1 98.8±0.1
Shot Noise 98.6±0.0 99.0±0.0 99.2±0.0 99.2±0.1 99.2±0.0 98.3±0.2 99.0±0.1
Spatter 98.7±0.1 98.8±0.1 99.0±0.1 99.0±0.0 99.1±0.1 98.4±0.1 98.8±0.0
Stripe 91.1±1.2 90.9±1.5 97.9±1.0 99.2±0.0 99.4±0.1 98.3±0.1 99.1±0.1
Translate 64.6±0.5 64.4±0.6 69.5±0.8 75.1±4.1 78.7±3.1 76.7±2.1 64.5±8.9
Zigzag 91.8±0.6 93.0±0.2 98.2±0.2 98.9±0.1 99.2±0.1 98.2±0.1 98.8±0.1

Avg. 86.2±1.8 94.2±0.2 96.6±0.1 97.3±0.2 97.7±0.2 96.7±0.1 96.4±0.6
Avg.\translate 87.7±1.9 96.3±0.2 98.5±0.1 98.9±0.0 99.1±0.0 98.1±0.1 98.7±0.0

Table B.2: MNIST-C ECE (%) results. Shown are the mean and 1 standard deviation.

Src-only AdaBN PL SHOT-IM SHOT FR BUFR

Brightness 2.4±0.4 0.3±0.1 0.3±0.1 0.4±0.1 0.9±0.1 0.9±0.1 0.5±0.1
Canny Edges 22.2±0.7 6.1±0.7 4.0±2.5 1.5±0.1 0.6±0.1 1.6±0.1 1.0±0.1
Dotted Line 0.7±0.1 0.7±0.1 0.5±0.1 0.4±0.1 0.9±0.0 1.0±0.1 0.6±0.1
Fog 26.4±18.0 3.5±1.4 0.5±0.0 0.4±0.0 0.9±0.1 1.0±0.1 0.5±0.1
Glass Blur 5.9±1.6 3.1±0.3 1.8±0.1 1.4±0.1 0.4±0.2 2.1±0.1 1.5±0.1
Impulse Noise 1.2±0.2 1.2±0.1 1.2±0.1 0.9±0.1 0.7±0.1 1.5±0.1 1.0±0.1
Motion Blur 9.1±3.4 1.4±0.2 1.0±0.2 0.7±0.1 0.8±0.0 1.4±0.1 0.8±0.1
Rotate 2.0±0.1 2.2±0.1 1.9±0.1 1.2±0.1 0.6±0.1 1.9±0.1 1.5±0.1
Scale 1.0±0.1 1.7±0.1 1.0±0.1 0.7±0.1 0.8±0.1 1.5±0.0 0.8±0.1
Shear 0.7±0.1 0.7±0.0 0.8±0.1 0.7±0.1 0.8±0.1 1.2±0.1 0.9±0.1
Shot Noise 0.7±0.1 0.6±0.1 0.5±0.1 0.5±0.1 0.8±0.1 1.2±0.1 0.7±0.1
Spatter 0.6±0.1 0.7±0.1 0.7±0.1 0.7±0.1 0.9±0.1 1.2±0.1 0.8±0.0
Stripe 4.3±1.0 6.5±1.4 2.8±3.1 0.5±0.1 0.9±0.1 1.2±0.2 0.6±0.0
Translate 25.2±0.3 28.6±0.6 29.0±0.7 24.2±4.1 19.2±3.0 18.8±2.7 33.7±8.9
Zigzag 5.4±0.5 4.9±0.3 1.3±0.2 0.8±0.0 0.8±0.0 1.4±0.1 0.8±0.1

Avg. 7.2±1.4 4.1±0.1 3.1±0.4 2.3±0.2 2.0±0.2 2.5±0.2 3.0±0.6
Avg.\translate 5.9±1.5 2.4±0.2 1.3±0.4 0.8±0.0 0.8±0.0 1.4±0.0 0.8±0.0
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B.3.2 EMNIST-DA full results

Tables B.3 and B.4 show the accuracy and ECE results for each individual shift of

EMNIST-DA. To help the baseline models we also calculate the average accuracy with-

out background colour shifts (bgs) as these tend to be the most severe shifts for which

BUFR has the most benefits.

Table B.3: EMNIST-DA accuracy (%) results. Shown are the mean and 1 standard deviation.

Src-only AdaBN Marg. Gauss. Full Gauss. PL BNM-IM SHOT-IM SHOT FR BUFR

Bricks 4.2±0.5 5.9±1.0 9.1±1.2 22.6±2.1 6.8±1.2 14.2±1.4 20.5±4.8 76.0±0.2 32.4±4.8 83.8±0.3
Crystals 19.7±3.1 42.1±1.9 50.0±0.7 60.0±1.0 47.4±1.6 61.2±2.5 71.5±3.8 80.1±0.2 76.8±0.4 82.6±0.3
Dotted Line 76.2±0.7 80.8±0.4 82.3±0.4 82.6±0.5 80.7±0.5 86.5±0.4 87.1±0.1 87.5±0.1 87.6±0.1 88.3±0.0
Fog 4.5±0.9 69.0±2.6 77.1±0.6 85.1±0.6 77.4±3.3 86.3±0.3 86.2±0.1 87.0±0.1 87.0±0.1 88.3±0.1
Gaussian Blur 45.1±3.2 65.2±1.6 77.1±0.8 82.3±0.2 78.8±0.8 83.7±0.3 83.7±0.2 83.9±0.2 83.0±0.4 86.0±0.1
Grass 2.3±0.1 6.1±0.4 5.9±1.1 52.7±3.5 6.7±1.8 14.6±6.1 42.4±40.9 61.8±36.5 79.2±0.3 84.5±0.2
Impulse Noise 36.8±1.6 76.7±0.8 81.4±0.3 82.6±0.1 79.9±0.6 84.2±0.3 84.4±0.2 84.4±0.2 84.8±0.2 86.0±0.1
Inverse 5.6±0.5 8.1±2.1 14.1±6.2 64.4±4.3 11.3±2.0 60.4±23.4 83.2±0.4 85.1±0.2 83.1±0.7 88.3±0.1
Oranges 26.5±2.7 40.7±2.3 49.3±1.0 77.1±0.6 43.0±3.1 79.9±0.6 80.5±0.3 82.4±0.2 82.3±0.3 84.8±0.3
Shot Noise 78.5±0.7 84.9±0.2 85.8±0.3 85.7±0.2 85.0±0.3 86.5±0.1 86.3±0.1 86.1±0.1 86.4±0.1 87.0±0.2
Sky 3.8±0.4 3.7±0.7 4.8±0.4 29.8±9.8 3.3±0.6 8.3±1.3 24.0±7.5 55.1±23.5 15.3±6.8 84.6±0.2
Stripe 15.4±1.1 46.9±4.9 63.0±5.6 82.3±0.8 63.8±3.7 82.8±0.5 83.9±0.3 85.1±0.2 84.5±0.4 87.1±0.1
Zigzag 65.0±0.2 71.3±0.2 73.8±0.1 76.1±0.3 72.3±0.2 79.7±0.5 81.0±0.5 85.8±0.2 85.7±0.2 87.5±0.2

Avg. 29.5±0.5 46.2±1.1 51.8±1.1 67.9±0.7 50.5±0.6 63.7±2.2 70.3±3.7 80.0±4.4 74.4±0.8 86.1±0.1
Avg.\bgs 40.9±0.4 62.8±1.1 69.3±1.4 80.1±0.5 68.6±0.5 81.2±3.1 84.5±0.1 85.6±0.1 85.2±0.1 87.3±0.0

Table B.4: EMNIST-DA ECE (%) results. Shown are the mean and 1 standard deviation.

Src-only AdaBN Marg. Gauss. Full Gauss. PL BNM-IM SHOT-IM SHOT FR BUFR

Bricks 54.6±5.0 64.4±1.1 62.0±0.9 52.4±2.0 93.2±1.2 84.9±1.4 79.4±4.8 22.5±0.3 44.1±4.2 6.2±0.4
Crystals 27.0±3.0 29.0±1.2 24.0±0.3 22.0±0.6 52.7±1.7 38.1±2.5 28.5±3.8 19.3±0.1 10.5±0.3 6.9±0.3
Dotted Line 11.4±0.6 9.2±0.5 7.9±0.4 7.5±0.4 19.6±0.7 13.0±0.4 12.9±0.1 12.9±0.1 3.8±0.2 3.4±0.2
Fog 19.2±6.5 13.8±1.5 8.8±0.8 4.8±0.4 24.1±4.0 13.3±0.4 13.8±0.1 13.5±0.1 3.9±0.2 3.3±0.1
Gaussian Blur 15.0±3.9 15.3±0.9 8.7±0.5 6.8±0.3 21.2±0.8 15.8±0.4 16.4±0.2 16.0±0.3 6.4±0.7 4.9±0.1
Grass 21.6±5.4 61.3±0.8 61.0±1.0 27.2±2.7 93.6±1.5 84.6±6.2 57.5±40.9 37.5±36.1 8.7±0.6 5.7±0.2
Impulse Noise 32.0±1.8 9.9±0.6 7.1±0.3 6.6±0.1 20.1±0.6 15.3±0.3 15.6±0.2 15.8±0.2 5.3±0.1 4.7±0.1
Inverse 65.1±5.8 60.8±2.2 54.9±5.7 18.1±3.0 89.3±2.1 39.0±23.3 16.9±0.5 14.7±0.1 5.6±0.5 3.3±0.1
Oranges 23.8±2.7 25.3±2.0 22.5±2.3 10.1±0.6 57.6±2.7 19.6±0.6 19.6±0.4 17.4±0.2 6.9±0.5 5.5±0.3
Shot Noise 4.8±0.5 4.9±0.3 4.5±0.3 4.9±0.2 16.4±0.1 13.0±0.1 13.7±0.1 14.8±0.1 4.6±0.3 4.2±0.2
Sky 42.6±3.5 52.4±4.9 51.6±6.4 45.8±8.4 97.2±0.4 90.2±1.1 76.0±7.5 42.7±23.0 58.0±6.8 5.6±0.3
Stripe 63.8±3.0 31.6±4.4 20.2±4.8 6.8±0.4 36.2±3.8 16.8±0.5 16.1±0.3 15.0±0.3 5.4±0.2 4.1±0.1
Zigzag 19.9±0.3 16.7±0.2 14.6±0.1 12.7±0.3 27.6±0.2 19.7±0.5 19.0±0.5 14.4±0.1 4.9±0.1 3.8±0.2

Avg. 30.8±1.6 30.3±1.1 26.7±1.1 17.4±0.7 49.9±0.6 35.6±2.2 29.6±3.7 19.7±4.4 12.9±0.9 4.7±0.2
Avg.\bgs 28.9±1.3 20.3±0.8 15.8±1.1 8.5±0.4 31.8±0.5 18.2±3.1 15.6±0.1 14.6±0.1 5.0±0.2 4.0±0.1
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B.3.3 CIFAR-10-C full results

Tables B.5 and B.6 show the accuracy and ECE results for each individual corruption

of CIFAR-10-C. As with EMNIST-DA BUFR achieves the biggest wins on the most

severe shifts (those with lowest AdaBN performance).

Table B.5: CIFAR-10-C accuracy (%) results. Shown are the mean and 1 standard deviation.

Src-only AdaBN PL SHOT-IM TENT FR BUFR

Brightness 91.4±0.4 91.5±0.3 91.9±0.2 92.7±0.3 93.2±0.3 93±0.4 93.3±0.3
Contrast 32.3±1.3 87.1±0.3 86.6±3.2 90.8±0.9 91.3±1.7 90.9±0.9 92.9±0.7
Defocus blr 53.1±6.4 88.8±0.4 89.3±0.5 90.5±0.4 90.9±0.5 90.9±0.3 91.5±0.5
Elastic 77.6±0.6 78.2±0.4 79.2±0.8 81.4±0.5 82.7±0.5 82.7±0.4 84.2±0.3
Fog 72.9±2.6 85.9±0.9 86.5±0.8 88.7±0.4 89.5±0.4 89.5±0.5 91.5±0.5
Frost 64.4±2.4 80.7±0.7 82.4±1.2 85.4±0.6 86.8±0.7 87±0.6 89.1±0.9
Gauss. blr 35.9±8 88.2±0.6 89±0.7 90.5±0.5 91±0.6 91.2±0.6 92.3±0.4
Gauss. nse 27.7±5.1 69.2±1 74.6±0.6 79.2±0.9 81.3±0.5 81.9±0.1 85.9±0.4
Glass blr 51.3±1.8 66.7±0.4 69±0.3 73.7±1 74.7±0.8 76.8±0.8 80.3±0.5
Impulse nse 25.9±3.8 62.1±1 67.2±0.5 73.2±0.8 75.3±0.8 76.6±0.4 89.3±1.4
Jpeg compr. 74.9±1 74.1±1 77.3±0.6 81±0.3 82.9±0.5 83.4±0.5 85.8±0.6
Motion blr 66.1±1.7 87.2±0.2 87.8±0.2 89.1±0.2 90±0.3 89.8±0.2 90.8±0.2
Pixelate 48.2±2.2 80.4±0.5 82±0.4 85.5±0.7 87.6±0.9 87.5±0.8 89.9±0.6
Saturate 89.9±0.4 92±0.1 92.5±0.3 93.1±0.1 93.3±0.1 93.4±0.4 93.5±0.3
Shot nse 34.4±4.9 71.2±1.2 77.1±0.9 81.6±0.7 83.5±0.6 85.6±1.9 87±0.2
Snow 76.6±1.1 82.4±0.6 83.8±1.1 86.4±0.6 87.8±0.7 88.4±1.7 89.7±0.5
Spatter 75±0.8 83.3±0.5 85.5±0.3 88±0.2 88.5±0.3 91±2.4 92.6±0.5
Speckle nse 40.7±3.7 70.4±0.8 76.1±1.2 81.3±1 83.2±0.9 85.8±1.7 87.4±0.4
Zoom blr 60.5±5.1 88.1±0.3 89±0.4 90.6±0.2 91.3±0.3 91.2±0.7 91.6±0.2

Avg. 57.8±0.7 80.4±0.1 82.5±0.3 85.4±0.2 86.6±0.3 87.2±0.7 89.4±0.2

Table B.6: CIFAR-10-C ECE (%) results. Shown are the mean and 1 standard deviation.

Src-only AdaBN PL SHOT-IM TENT FR BUFR

Brightness 4.7±0.2 4±0.1 8.1±0.2 7.2±0.4 6.4±0.3 5.9±0.3 6.2±0.2
Contrast 43.5±2.8 5.7±0.4 13.2±3.1 9.8±0.9 8.4±1.6 6.6±0.4 6.6±0.7
Defocus blr 28.2±4 6.1±0.4 10.7±0.5 9.4±0.4 8.6±0.5 7.8±0.3 7.9±0.4
Elastic 12.4±0.7 12.6±0.4 20.8±0.8 18.6±0.5 16.5±0.5 15.1±0.5 15.2±0.3
Fog 17.4±2.1 7.5±0.7 13.5±0.8 11.3±0.3 10.1±0.4 8.9±0.3 8±0.5
Frost 22.7±1.7 10.4±0.6 17.5±1.2 14.6±0.6 12.7±0.6 10.7±0.8 10.3±0.9
Gauss. blr 40.7±6.2 6.1±0.4 11±0.7 9.5±0.4 8.5±0.5 7.5±0.4 7.3±0.4
Gauss. nse 57.6±6.7 18.5±0.7 25.3±0.6 20.9±0.9 18±0.4 15.9±0.3 13.3±0.4
Glass blr 31.2±1.3 20.8±0.4 30.9±0.3 26.3±1 24.2±0.8 20.9±0.7 18.9±0.5
Impulse nse 51.2±4 23.3±0.8 32.7±0.5 26.8±0.9 23.7±0.8 20.6±0.5 10.2±1.3
Jpeg compr. 14.6±0.8 15.5±0.7 22.6±0.6 18.9±0.4 16.4±0.5 14.5±0.4 13.6±0.7
Motion blr 21.1±1.3 6.8±0.3 12.1±0.2 10.9±0.2 9.5±0.3 8.7±0.3 8.6±0.2
Pixelate 36.9±2.5 11.1±0.4 17.9±0.4 14.5±0.7 11.9±0.9 10.7±0.7 9.5±0.6
Saturate 5.5±0.3 4.2±0.1 7.4±0.3 6.9±0.1 6.4±0.1 5.9±0.2 6±0.3
Shot nse 50.2±5.9 17±0.9 22.8±0.9 18.4±0.7 15.9±0.6 14±0.3 12.3±0.2
Snow 14.3±0.5 9.8±0.4 16.1±1.1 13.6±0.6 11.6±0.7 10.5±0.7 9.7±0.4
Spatter 16.9±0.8 9.3±0.3 14.5±0.3 12±0.2 11±0.2 9.3±0.2 7±0.6
Speckle nse 43.2±4.5 17.9±0.5 23.8±1.1 18.7±1 16.1±0.9 13.9±0.7 11.9±0.4
Zoom blr 24.4±3.5 6.2±0.1 11±0.4 9.4±0.2 8.3±0.3 7.6±0.5 7.9±0.2

Avg. 28.2±0.4 11.2±0.1 17.5±0.3 14.6±0.2 12.8±0.3 11.3±0.3 10±0.2
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B.3.4 CIFAR-100-C full results

Tables B.7 and B.8 show the accuracy and ECE results for each individual corruption

of CIFAR-100-C. As with EMNIST-DA BUFR achieves the biggest wins on the most

severe shifts (those with lowest AdaBN performance).

Table B.7: CIFAR-100-C accuracy (%) results. Shown are the mean and 1 standard deviation.

Src-only AdaBN PL SHOT-IM TENT FR BUFR

Brightness 63.2±1.1 66.1±0.5 69.6±0.7 72.6±0.6 72.2±0.5 71.8±0.5 73.6±0.2
Contrast 13.9±0.6 61.4±0.4 59.2±3.5 70.1±0.4 64±3.1 68±0.5 72.2±0.5
Defocus blr 35.9±0.7 65.6±0.1 69.3±0.1 71.8±0.3 71±0.5 71.2±0.1 72.2±0.2
Elastic 58.5±0.7 60.4±0.2 63.9±0.4 66.9±0.2 65.5±0.2 65.9±0.4 67.1±0.5
Fog 36.9±0.5 55.4±0.6 60.4±0.6 66.5±0.6 67.1±0.6 64.9±0.4 70.1±0.5
Frost 41.1±0.9 55.3±0.6 60.1±0.8 65.2±0.4 65.3±0.9 63±0.5 67.5±0.7
Gauss. blr 28.2±1 64.3±0.3 68.9±0.1 71.7±0.2 71±0.3 70.9±0.3 72.9±0.6
Gauss. nse 11.9±1.2 43.8±0.6 53.1±0.7 60.3±0.4 59.5±0.6 57.7±0.4 63±0.3
Glass blr 45.1±0.9 53.3±0.6 57.3±0.7 62.4±0.3 61.4±0.5 60.5±0.3 63.2±0.4
Impulse nse 7.2±0.8 40.8±0.4 50.6±0.5 58.4±0.6 56.3±0.7 55.2±0.9 66.9±0.6
Jpeg compr. 48.6±0.9 49.8±0.7 55.8±0.3 61.2±0.5 60.8±0.1 59.3±0.5 62.6±0.4
Motion blr 45.1±0.5 63.4±0.2 66.3±0.6 69.7±0.2 69±0.5 68.6±0.4 70.8±0.2
Pixelate 22.3±0.4 59.4±0.6 64.9±0.6 69.7±0.4 69.8±0.4 68.1±0.3 71.4±0.5
Saturate 55.8±0.4 65.7±0.4 70.2±0.8 72.6±0.2 71.4±0.7 72.2±0.5 72.4±0.6
Shot nse 14.1±1.2 44.6±0.9 56.1±0.8 61.9±0.6 60.3±0.4 59.8±0.3 62.1±2.8
Snow 49.4±0.8 53.5±0.4 59.8±0.9 65±0.6 65.6±0.4 63.8±0.6 65.9±2.2
Spatter 54.8±1.1 64.9±0.6 72.1±0.3 73.8±0.4 72.9±0.5 73.8±0.5 74.3±0.2
Speckle nse 15.6±1.3 42.3±1 54.2±1.5 62.1±0.6 59.8±0.3 59.6±0.8 62.1±2.7
Zoom blr 45.1±0.7 65.9±0.3 69.1±0.5 71.9±0.3 71.1±0.8 71±0.6 71.2±0.4

Avg. 36.4±0.5 56.6±0.3 62.1±0.2 67±0.2 66±0.4 65.5±0.2 68.5±0.2

Table B.8: CIFAR-100-C ECE (%) results. Shown are the mean and 1 standard deviation.

Src-only AdaBN PL SHOT-IM TENT FR BUFR

Brightness 6.3±0.3 9.4±0.3 30.2±0.7 27.4±0.4 20.7±0.4 12.4±0.3 12±0.6
Contrast 37.8±2.2 11.4±0.3 40.5±3.4 29.6±0.8 29.5±3.5 14±0.2 12.8±0.5
Defocus blr 16±0.8 9.7±0.3 30.6±0.2 28.2±0.4 21.6±0.3 13.4±0.3 12.7±0.2
Elastic 8±0.1 10.8±0.2 35.9±0.4 33±0.3 25.8±0.1 15.2±0.2 15.3±0.3
Fog 21±0.6 12.2±0.3 39.5±0.6 33.3±0.7 24.8±0.5 15.9±0.3 14±0.6
Frost 14.1±1.1 13.3±0.4 39.7±0.8 34.8±0.4 26.1±0.7 16.3±0.3 15.3±0.2
Gauss. blr 20.5±1.4 10±0.4 31±0.1 28.4±0.2 21.7±0.2 13.5±0.2 12.5±0.3
Gauss. nse 39.3±5.5 16.7±0.2 46.8±0.6 39.8±0.5 30.8±0.7 19.4±0.5 17.5±0.5
Glass blr 15.7±1.1 13.4±0.1 42.5±0.7 37.6±0.3 29.1±0.4 17.9±0.4 17.6±0.6
Impulse nse 35.1±2.6 17.4±0.2 49.3±0.6 41.5±0.7 33.7±0.8 20.5±0.3 15.2±0.2
Jpeg compr. 8.6±0.2 15±0.4 44.1±0.4 38.8±0.5 29.6±0.2 19.1±0.2 18.2±0.5
Motion blr 12.2±0.2 10.4±0.3 33.6±0.6 30.3±0.2 23.2±0.4 14.3±0.3 13.6±0.3
Pixelate 27.5±1 11.6±0.4 35±0.6 30.3±0.4 22.5±0.3 14.2±0.4 13.6±0.4
Saturate 8.8±0.2 9.5±0.3 29.6±0.8 27.4±0.3 21.2±0.6 12.7±0.2 12.3±0.7
Shot nse 37.2±5.9 16±0.2 43.7±0.8 38.1±0.5 30.2±0.8 18.6±0.4 17±0.6
Snow 8.5±0.3 14.4±0.2 40.1±0.9 34.9±0.7 25.7±0.5 17±0.5 14.9±0.1
Spatter 6.7±0.3 9.3±0.1 27.8±0.3 26.2±0.4 20±0.6 12±0.3 11±0.4
Speckle nse 34.5±5.4 17.2±0.3 45.7±1.6 37.9±0.6 30.6±0.2 18.7±0.6 16.8±0.8
Zoom blr 10.5±0.3 9.1±0.2 30.8±0.5 28.2±0.4 21.5±0.7 13.1±0.5 13.2±0.7

Avg. 19.4±0.9 12.5±0.1 37.7±0.2 32.9±0.2 25.7±0.4 15.7±0.1 14.5±0.3
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B.3.5 CIFAR-10-C full online results

Tables B.9 and B.10 show the accuracy and ECE results for each individual corruption

of CIFAR-10-C when in the online (single epoch) set-up. Again FR achieves the biggest

wins on the most severe shifts.
Table B.9: CIFAR-10-C online accuracy (%) results. Shown are the mean and 1 standard deviation.

Src-only AdaBN SHOT-IM TENT FR

Brightness 91.4±0.4 91.6±0.2 92.2±0.4 91.8±0.3 92.8±0.3
Contrast 32.3±1.3 87.1±0.4 87.8±0.5 87.8±0.6 89.8±0.6
Defocus blr 53.1±6.4 88.7±0.5 89.7±0.5 89.1±0.5 90.6±0.5
Elastic 77.6±0.6 78±0.3 80.3±0.6 79.2±0.5 82±0.4
Fog 72.9±2.6 85.9±1.1 87.2±0.5 86.5±0.8 89±0.8
Frost 64.4±2.4 80.7±0.8 83±0.8 81.8±0.8 85.9±0.7
Gauss. blr 35.9±8 88.3±0.7 89.5±0.6 88.8±0.5 90.8±0.6
Gauss. nse 27.7±5.1 68.8±0.9 75.4±0.8 72.3±0.7 80.6±0.6
Glass blr 51.3±1.8 66.7±0.5 70.6±1 68.3±0.6 74.7±0.9
Impulse nse 25.9±3.8 62±1.2 68.8±0.8 65.5±0.7 74.5±0.4
Jpeg compr. 74.9±1 73.9±1.2 78.4±0.9 76.2±0.9 82.2±0.5
Motion blr 66.1±1.7 87±0.1 88.2±0.3 87.6±0.3 89.5±0.2
Pixelate 48.2±2.2 80.5±0.4 83.2±0.7 81.7±0.5 86.7±0.7
Saturate 89.9±0.4 91.9±0.1 92.4±0.1 92.3±0.2 92.8±0.2
Shot nse 34.4±4.9 70.9±1.2 77.7±1.6 74.6±1.3 82.2±0.6
Snow 76.6±1.1 82.6±0.7 84.5±0.9 83.4±0.9 86.8±0.6
Spatter 75±0.8 83.2±0.5 86±0.2 84.6±0.2 88.6±0.2
Speckle nse 40.7±3.7 70.2±0.7 77.2±0.6 74.2±0.6 82.4±0.2
Zoom blr 60.5±5.1 88±0.4 89.4±0.2 88.6±0.3 90.7±0.2

Avg. 57.8±0.7 80.3±0 83.2±0.2 81.8±0.2 85.9±0.3

Table B.10: CIFAR-10-C online ECE (%) results. Shown are the mean and 1 standard deviation.

Src-only AdaBN SHOT-IM TENT FR

Brightness 4.7±0.2 5.4±0.2 5.1±0.3 5.1±0.2 4.9±0.3
Contrast 43.5±2.8 6.8±0.4 8.7±0.5 7.6±0.5 6.1±0.4
Defocus blr 28.2±4 7.1±0.4 6.7±0.3 7±0.3 6.4±0.3
Elastic 12.4±0.7 13.5±0.3 12.7±0.4 12.9±0.5 12.3±0.4
Fog 17.4±2.1 8.4±0.6 8.3±0.3 8.3±0.4 7.3±0.5
Frost 22.7±1.7 11.2±0.7 10.9±0.5 11±0.5 9±0.6
Gauss. blr 40.7±6.2 7.3±0.4 6.8±0.4 7±0.3 6.3±0.4
Gauss. nse 57.6±6.7 19.2±0.7 16±0.6 17.6±0.4 13.2±0.6
Glass blr 31.2±1.3 21.4±0.6 19.6±0.7 20.7±0.5 17.9±0.7
Impulse nse 51.2±4 23.8±0.9 20.6±0.8 22.2±0.4 17.9±0.4
Jpeg compr. 14.6±0.8 16.3±0.9 14±0.5 15.1±0.6 12.2±0.4
Motion blr 21.1±1.3 7.8±0.1 7.6±0.3 7.7±0.2 7±0.2
Pixelate 36.9±2.5 12±0.4 10.8±0.6 11.5±0.5 8.9±0.5
Saturate 5.5±0.3 5.1±0.1 5±0.1 5.1±0.1 4.9±0.2
Shot nse 50.2±5.9 17.9±0.9 14.3±1.1 16±0.8 12±0.5
Snow 14.3±0.5 10.7±0.3 9.9±0.6 10.4±0.6 8.9±0.5
Spatter 16.9±0.8 10.2±0.4 9.1±0.2 9.6±0.2 7.6±0.2
Speckle nse 43.2±4.5 18.8±0.5 14.8±0.5 16.3±0.5 11.9±0.2
Zoom blr 24.4±3.5 7.3±0.3 6.8±0.2 7.1±0.2 6.3±0.1

Avg. 28.2±0.4 12.1±0 10.9±0.1 11.5±0.1 9.5±0.2
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B.3.6 CIFAR-100-C full online results

Tables B.11 and B.12 show the accuracy and ECE results for each individual corruption

of CIFAR-100-C when in the online (single epoch) set-up. Again FR achieves the

biggest wins on the most severe shifts.

Table B.11: CIFAR-100-C online accuracy (%) results. Shown are the mean and 1 standard deviation.

Src-only AdaBN SHOT-IM TENT FR

Brightness 63.2±1.1 66.1±0.4 69.3±0.9 69.9±0.7 69.4±0.4
Contrast 13.9±0.6 61.4±0.5 64.8±0.5 66.6±1.1 64.5±0.3
Defocus blr 35.9±0.7 65.6±0.1 69±0.1 69.4±0.3 68.6±0.2
Elastic 58.5±0.7 60.4±0.2 63.3±0.5 63.7±0.1 63.4±0.3
Fog 36.9±0.5 55.4±0.6 61±0.5 62.5±0.7 61.7±0.5
Frost 41.1±0.9 55.3±0.6 60.5±1 61.8±0.6 60.8±0.8
Gauss. blr 28.2±1 64.3±0.3 68.6±0.2 69±0.6 68.4±0.5
Gauss. nse 11.9±1.2 43.8±0.6 53.5±0.2 55.1±0.5 54.7±0.3
Glass blr 45.1±0.9 53.3±0.6 57.8±0.4 58.2±0.5 57.9±0.5
Impulse nse 7.2±0.8 40.8±0.5 50.2±0.4 50.9±0.7 51.7±0.8
Jpeg compr. 48.6±0.9 49.8±0.7 56±0.2 57.2±0.2 56.6±0.6
Motion blr 45.1±0.5 63.4±0.2 66.4±0.4 66.7±0.6 66±0.3
Pixelate 22.3±0.4 59.4±0.6 65.1±0.7 67.1±0.4 65.6±0.6
Saturate 55.8±0.4 65.7±0.4 69.5±0.6 69.5±0.6 69.3±0.4
Shot nse 14.1±1.2 44.6±0.9 54.9±0.1 55.5±0.4 56.4±0.3
Snow 49.4±0.8 53.5±0.4 59.7±1.1 61.6±0.8 60.5±0.5
Spatter 54.8±1.1 64.9±0.6 71.3±0.5 70.6±0.6 71.6±0.7
Speckle nse 15.6±1.3 42.3±1 54.2±0.3 54.9±0.3 55.8±0.6
Zoom blr 45.1±0.7 65.9±0.3 68.9±0.6 69±0.4 68.8±0.3

Avg. 36.4±0.5 56.6±0.3 62.3±0.3 63.1±0.3 62.7±0.3

Table B.12: CIFAR-100-C online ECE (%) results. Shown are the mean and 1 standard deviation.

Src-only AdaBN SHOT-IM TENT FR

Brightness 6.3±0.3 11.4±0.1 11.6±0.4 11.9±0.2 10.9±0.2
Contrast 37.8±2.2 12.5±0.2 14.6±0.3 14.1±0.6 12.5±0.2
Defocus blr 16±0.8 11.4±0.2 11.3±0.2 11.8±0.2 11.4±0.3
Elastic 8±0.1 12.7±0.2 12.9±0.2 13.4±0.3 13±0.2
Fog 21±0.6 13.8±0.2 13.9±0.2 14.4±0.2 13.6±0.3
Frost 14.1±1.1 14.5±0.2 14.5±0.6 14.8±0.3 13.9±0.4
Gauss. blr 20.5±1.4 11.9±0.3 11.6±0.4 11.9±0.2 11.9±0.4
Gauss. nse 39.3±5.5 17.7±0.3 16.7±0.3 17.2±0.7 16.5±0.3
Glass blr 15.7±1.1 15±0.1 15.2±0.5 16.1±0.3 15.1±0.1
Impulse nse 35.1±2.6 18.4±0.2 18.1±0.2 19.4±0.5 17.9±0.3
Jpeg compr. 8.6±0.2 16.2±0.3 15.9±0.1 16.4±0.4 16.2±0.2
Motion blr 12.2±0.2 12.2±0.2 12.2±0.3 12.9±0.2 12.5±0.2
Pixelate 27.5±1 13±0.3 12.5±0.3 12.4±0.1 12.3±0.2
Saturate 8.8±0.2 11.4±0.1 11.3±0.3 11.7±0.4 11.3±0.4
Shot nse 37.2±5.9 17.2±0.3 16.4±0.2 17.5±0.7 16.2±0.3
Snow 8.5±0.3 15.6±0.2 15±0.4 14.7±0.3 14.8±0.1
Spatter 6.7±0.3 11.4±0.2 10.7±0.2 11.3±0.3 10.7±0.3
Speckle nse 34.5±5.4 18.2±0.4 16.5±0.4 17.5±0.3 16.1±0.4
Zoom blr 10.5±0.3 11.2±0.2 11.2±0.3 11.6±0.3 11.4±0.1

Avg. 19.4±0.9 14±0.1 13.8±0.1 14.3±0.1 13.6±0.1
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Unit-Level Surprise

C.1 Surprise

The surprisal, also known as the information content, of an event X = x, with X ∼
P(X), is defined as log(1/P(x)) = − log(P(x)). This quantity is large when P(x) is

small and intuitively represents how surprised we are to see X = x. Surprise can be

used to refer to different mathematical quantities. For example, the entropy, H(X) =

−∑P(x) logP(x), can also be called the surprise and mathematically is the expected

surprisal. To emphasise our intuitive reasoning, throughout Chapter 5 we refer to the

KL divergence DKL(Q||P) = H(Q,P)−H(Q) as surprise. This quantity can also be

called the Bayesian surprise, information gain, or asymmetric surprise (Eslami et al.,

2018; Itti and Baldi, 2009). We measure unit-level surprise, s(A), by calculating the

KL divergence between source activation distribution P(A) and target activation distri-

bution Q(A), i.e. s(A) = DKL(Q(A)||P(A)) (Itti and Baldi, 2009; MacKay, 1992).

To relate the KL divergence to surprisal we consider a second random variable Y =

y, Y ∼ Q(Y ). Sometimes we may assume that we will receive samples from P(X)

but actually receive samples from Q(Y ), for example if an unexpected domain shift

occurs1. The amount of additional surprisal we receive on account of our assumption

when we observe sample y is log(1/P(X = y))− log(1/Q(Y = y)). The KL divergence

DKL(Q||P) is the expected value of this quantity over Q, that is, the expected additional

surprisal we receive due to incorrectly assuming that we will receive samples from P.

1Although in this situation only the distribution changes with the random variable staying the same,

the mathematical explanation is clearer using different random variables.
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C.2 Extended Results

This section provides full per-shift results comparing SGD, FlexTune and our surprise

based update rule for different numbers of sample per class (shots).

Table C.1: 2-shot accuracy across shifts: training different layers of a CNN.

Conv1 Conv2 Conv3 FC1 FC2 FC1 + FC2

H1 0.0±0.0 0.0±0.1 7.2±4.9 65.3±14.1 95.2±1.4 77.8±1.4
H2 0.0±0.0 0.0±0.0 5.0±0.8 45.7±8.8 80.5±5.4 71.4±4.2
H3 0.0±0.0 0.0±0.0 10.8±7.3 49.4±4.3 92.9±2.3 81.4±5.7
Crystals 69.9±4.9 52.1±0.9 51.0±0.9 50.0±0.6 47.8±0.7 49.6±1.1
Fog 86.5±3.2 84.5±0.4 84.0±0.5 82.3±0.8 78.8±1.2 81.6±0.4
Gauss. Blur 82.7±0.3 80.4±2.0 79.0±0.3 74.9±0.6 71.5±1.0 74.1±1.9
Grass 81.4±0.8 21.6±7.2 8.1±0.7 7.3±0.6 7.2±0.5 7.7±0.5
Imp. Noise 87.4±0.9 86.0±0.2 83.4±1.4 83.2±0.9 80.7±0.6 81.9±1.4
Sky 74.4±3.9 54.4±0.5 33.2±2.8 18.4±0.7 13.7±2.7 18.4±3.3
Stripe 74.3±0.9 58.2±4.8 58.2±1.4 45.7±2.1 36.7±1.0 47.9±2.6

Avg High 0.0±0.0 0.0±0.0 7.7±4.0 53.5±3.4 89.6±1.5 76.9±2.9
Avg Low 79.5±1.3 62.4±2.1 56.7±0.5 51.7±0.6 48.1±0.5 51.6±0.7
Avg All 55.7±0.9 43.7±1.5 42.0±1.4 52.2±0.8 60.5±0.3 59.2±0.9

Table C.2: 2-shot accuracy across shifts: comparison of different responses. Zero-shot

is the accuracy before any updates are performed.

Zero-shot SGD FlexTune Upd. Rule

H1 0.0±0.0 56.7±4.2 95.2±1.4 33.8±21.4
H2 0.0±0.0 51.9±5.7 80.5±5.4 34.3±11.2
H3 0.0±0.0 57.6±5.3 92.9±2.3 41.4±9.4
Crystals 46.3±0.4 55.3±1.3 69.9±4.9 68.5±5.4
Fog 78.4±0.4 83.6±1.2 87.1±2.3 86.6±3.2
Gauss. Blur 60.4±2.1 81.2±0.6 82.7±0.3 81.8±1.8
Grass 5.8±0.2 20.1±12.0 81.4±0.8 81.4±0.8
Imp. Noise 76.9±0.9 87.9±0.2 87.4±0.9 87.7±0.5
Sky 4.1±0.5 35.2±4.9 74.4±3.9 74.4±3.9
Stripe 16.3±1.1 70.0±1.4 74.3±0.9 72.8±2.1

Avg High 0.0±0.0 55.4±1.4 89.6±1.5 36.5±6.7
Avg Low 41.2±0.3 61.9±2.4 79.6±1.2 79.0±1.1
Avg All 28.8±0.2 60.0±1.9 82.6±0.7 66.3±2.5
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Table C.3: 5-shot accuracy across shifts: training different layers of a CNN.

Conv1 Conv2 Conv3 FC1 FC2 FC1 + FC2

H1 0.0±0.0 0.1±0.1 29.8±8.2 82.8±7.3 96.4±1.0 91.9±2.0
H2 0.0±0.0 0.5±0.9 26.1±6.2 76.7±6.6 91.3±1.5 86.2±3.8
H3 0.0±0.0 0.3±0.4 20.3±6.1 82.3±5.3 96.0±0.6 93.0±2.8
Crystals 78.1±1.7 57.5±0.9 52.3±0.8 51.5±0.5 49.2±0.8 51.4±0.6
Fog 89.6±0.3 86.5±0.7 84.8±0.5 83.1±0.6 81.3±0.6 82.6±0.6
Gauss. Blur 84.0±0.4 82.5±0.7 81.7±0.6 78.3±0.9 75.9±0.5 78.1±0.4
Grass 82.0±2.2 41.7±7.4 10.3±1.3 8.4±0.9 7.3±0.5 9.4±0.4
Imp. Noise 88.6±0.3 86.8±0.1 85.7±0.3 84.3±0.9 81.5±0.4 83.9±0.4
Sky 79.6±0.7 65.9±0.5 44.3±1.9 27.9±1.8 18.3±2.4 28.8±1.2
Stripe 77.1±1.8 70.9±2.6 70.6±0.6 60.4±1.6 47.0±1.3 60.9±2.5

Avg High 0.0±0.0 0.3±0.5 25.4±3.8 80.6±4.6 94.5±0.9 90.4±1.1
Avg Low 82.7±0.4 70.2±1.2 61.4±0.2 56.3±0.2 51.5±0.3 56.4±0.3
Avg All 57.9±0.3 49.3±0.8 50.6±1.2 63.6±1.2 64.4±0.3 66.6±0.1

Table C.4: 5-shot accuracy across shifts: comparison of different responses. Zero-shot

is the accuracy before any updates are performed.

Zero-shot SGD FlexTune Upd. Rule

H1 0.0±0.0 68.0±13.8 96.4±1.0 80.3±4.8
H2 0.0±0.0 78.0±2.0 91.3±1.5 77.3±7.2
H3 0.0±0.0 77.1±5.0 96.0±0.6 79.9±9.1
Crystals 46.3±0.4 57.5±3.8 78.1±1.7 77.0±3.4
Fog 78.4±0.4 86.3±0.2 89.6±0.3 89.6±0.3
Gauss. Blur 60.4±2.1 84.3±0.7 84.0±0.4 83.9±0.3
Grass 5.8±0.2 50.9±6.8 82.0±2.2 82.3±2.6
Imp. Noise 76.9±0.9 88.3±0.1 88.6±0.3 87.6±0.3
Sky 4.1±0.5 56.6±4.7 79.6±0.7 80.8±0.9
Stripe 16.3±1.1 75.4±1.0 77.1±1.8 79.3±0.8

Avg High 0.0±0.0 74.4±5.2 94.5±0.9 79.2±4.2
Avg Low 41.2±0.3 71.3±2.1 82.7±0.4 82.9±0.5
Avg All 28.8±0.2 72.2±2.9 86.3±0.5 81.8±1.2
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Table C.5: 10-shot accuracy across shifts: training different layers of a CNN.

Conv1 Conv2 Conv3 FC1 FC2 FC1 + FC2

H1 0.0±0.0 0.5±0.8 50.1±5.1 91.3±2.0 96.1±0.8 94.5±0.6
H2 0.0±0.0 0.9±0.8 45.7±8.8 88.5±1.7 92.8±0.3 89.0±2.2
H3 0.0±0.0 0.3±0.4 46.6±16.0 89.7±5.3 95.0±1.1 92.8±1.8
Crystals 80.5±1.5 59.9±3.1 54.4±0.1 52.6±0.7 50.6±0.8 52.6±0.8
Fog 90.1±0.1 87.8±0.5 85.6±0.3 84.1±0.2 82.1±1.3 84.3±0.4
Gauss. Blur 85.0±0.4 83.9±1.1 82.6±0.4 81.4±0.9 77.9±2.3 80.7±0.8
Grass 83.8±0.9 57.1±3.2 15.1±0.8 10.0±0.9 7.8±0.1 11.2±1.0
Imp. Noise 89.1±0.0 87.2±0.4 86.0±0.3 84.7±0.6 82.7±0.1 84.5±0.2
Sky 83.3±1.5 71.4±1.0 52.5±0.5 36.7±1.2 24.5±2.4 38.0±0.2
Stripe 82.4±0.7 76.1±2.8 76.1±1.1 69.2±0.2 56.8±0.8 68.1±1.8

Avg High 0.0±0.0 0.6±0.6 47.5±6.4 89.8±1.2 94.6±0.6 92.1±0.5
Avg Low 84.9±0.3 74.8±1.3 64.6±0.2 59.8±0.4 54.6±0.5 59.9±0.4
Avg All 59.4±0.2 52.5±0.8 59.5±1.8 68.8±0.5 66.6±0.4 69.6±0.4

Table C.6: 10-shot accuracy across shifts: comparison of different responses. Zero-

shot is the accuracy before any updates are performed.

Zero-shot SGD FlexTune Upd. Rule

H1 0.0±0.0 84.8±0.5 96.1±0.8 90.4±3.0
H2 0.0±0.0 79.9±1.7 92.8±0.3 88.3±2.0
H3 0.0±0.0 87.1±2.7 95.0±1.1 89.7±5.1
Crystals 46.3±0.4 61.2±1.6 80.5±1.5 79.8±0.9
Fog 78.4±0.4 87.4±0.2 90.1±0.1 90.1±0.1
Gauss. Blur 60.4±2.1 85.7±0.6 85.0±0.4 85.3±1.0
Grass 5.8±0.2 69.2±2.4 83.8±0.9 84.3±1.3
Imp. Noise 76.9±0.9 88.2±0.4 89.1±0.0 88.0±0.2
Sky 4.1±0.5 66.8±1.1 83.3±1.5 83.4±1.5
Stripe 16.3±1.1 78.8±1.1 82.4±0.7 82.5±0.9

Avg High 0.0±0.0 84.0±0.5 94.6±0.6 89.5±1.2
Avg Low 41.2±0.3 76.8±0.7 84.9±0.3 84.8±0.5
Avg All 28.8±0.2 78.9±0.5 87.8±0.4 86.2±0.6
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Table C.7: 20-shot accuracy across shifts: training different layers of a CNN.

Conv1 Conv2 Conv3 FC1 FC2 FC1 + FC2

H1 0.0±0.0 2.1±3.4 66.4±8.9 95.7±0.9 97.2±0.7 95.1±0.6
H2 0.0±0.0 5.6±0.9 64.9±8.7 90.3±1.5 94.8±0.6 91.6±1.1
H3 0.0±0.0 9.5±1.3 69.3±6.2 93.5±2.2 96.1±1.0 95.3±0.9
Crystals 83.7±0.5 65.6±2.3 56.7±0.2 54.6±0.3 51.5±0.7 54.6±0.4
Fog 90.4±0.4 88.4±0.1 86.1±1.0 85.2±0.2 84.0±0.3 85.1±0.2
Gauss. Blur 86.6±0.4 85.0±1.4 83.4±0.6 82.2±0.8 81.0±0.9 82.3±1.1
Grass 85.6±1.0 67.6±2.8 20.7±1.8 13.4±1.0 8.3±0.3 14.1±0.9
Imp. Noise 89.1±0.6 87.7±0.2 86.6±0.2 85.2±0.5 83.7±0.5 84.9±0.2
Sky 84.8±1.0 76.3±0.7 59.5±0.4 45.1±1.5 31.7±0.7 47.0±0.7
Stripe 83.9±1.3 79.7±2.0 78.9±0.9 74.7±0.2 62.2±0.9 75.3±0.3

Avg High 0.0±0.0 5.7±0.8 66.8±2.9 93.2±1.2 96.1±0.3 94.0±0.2
Avg Low 86.3±0.3 78.6±1.1 67.4±0.2 62.9±0.3 57.5±0.4 63.3±0.3
Avg All 60.4±0.2 56.7±0.9 67.3±0.8 72.0±0.5 69.0±0.4 72.5±0.3

Table C.8: 20-shot accuracy across shifts: comparison of different responses. Zero-

shot is the accuracy before any updates are performed.

Zero-shot SGD FlexTune Upd. Rule

H1 0.0±0.0 89.3±1.6 97.2±0.7 95.5±1.2
H2 0.0±0.0 85.4±3.1 94.8±0.6 89.9±1.4
H3 0.0±0.0 90.3±0.6 96.3±0.9 93.5±2.4
Crystals 46.3±0.4 66.5±1.8 83.7±0.5 82.1±0.9
Fog 78.4±0.4 88.1±0.3 90.4±0.4 90.4±0.4
Gauss. Blur 60.4±2.1 86.0±0.5 86.6±0.4 86.9±0.4
Grass 5.8±0.2 77.0±1.2 85.6±1.0 85.5±0.2
Imp. Noise 76.9±0.9 88.5±0.1 89.1±0.6 88.3±0.3
Sky 4.1±0.5 73.3±0.8 84.8±1.0 84.7±0.9
Stripe 16.3±1.1 81.6±0.4 83.9±1.3 84.7±1.1

Avg High 0.0±0.0 88.3±1.4 96.1±0.2 93.0±1.1
Avg Low 41.2±0.3 80.1±0.3 86.3±0.3 86.1±0.3
Avg All 28.8±0.2 82.6±0.2 89.2±0.2 88.2±0.4
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Table C.9: 50-shot accuracy across shifts: training different layers of a CNN.

Conv1 Conv2 Conv3 FC1 FC2 FC1 + FC2

H1 0.0±0.0 25.8±24.0 83.5±5.3 97.0±0.2 97.2±0.5 95.9±0.9
H2 0.0±0.0 32.8±4.5 84.4±1.9 94.8±0.7 95.2±0.9 93.5±1.2
H3 0.0±0.0 28.1±17.4 85.0±4.7 95.5±1.9 97.6±0.5 96.1±0.6
Crystals 85.2±0.5 72.9±1.2 59.3±0.3 57.8±0.3 53.1±0.6 57.8±0.2
Fog 90.6±0.2 89.3±0.1 87.7±0.2 86.7±0.2 85.1±0.3 86.6±0.2
Gauss. Blur 87.9±0.5 87.3±0.3 85.8±0.4 84.6±0.2 83.2±0.6 84.6±0.2
Grass 87.1±0.6 75.2±1.9 29.8±1.6 19.3±0.8 9.0±0.2 19.7±0.6
Imp. Noise 89.4±0.3 88.3±0.2 86.9±0.3 85.9±0.3 84.8±0.2 85.9±0.2
Sky 86.7±0.5 80.9±0.3 66.4±0.6 54.3±1.8 38.2±0.8 56.7±0.4
Stripe 87.4±0.3 84.6±0.7 83.2±0.5 79.9±0.9 67.6±0.8 79.8±0.8

Avg High 0.0±0.0 28.9±12.2 84.3±3.7 95.8±0.6 96.7±0.6 95.2±0.2
Avg Low 87.8±0.1 82.6±0.4 71.3±0.3 66.9±0.3 60.1±0.3 67.3±0.0
Avg All 61.4±0.1 66.5±3.8 75.2±0.9 75.6±0.4 71.1±0.3 75.7±0.1

Table C.10: 50-shot accuracy across shifts: comparison of different responses. Zero-

shot is the accuracy before any updates are performed.

Zero-shot SGD FlexTune Upd. Rule

H1 0.0±0.0 93.3±0.5 97.2±0.5 96.8±0.3
H2 0.0±0.0 89.9±0.9 95.2±0.9 94.4±0.6
H3 0.0±0.0 93.8±1.4 97.6±0.5 95.5±2.0
Crystals 46.3±0.4 73.2±0.9 85.2±0.5 83.5±0.5
Fog 78.4±0.4 88.9±0.3 90.6±0.2 90.5±0.3
Gauss. Blur 60.4±2.1 87.3±0.4 87.9±0.5 87.4±0.3
Grass 5.8±0.2 81.8±0.4 87.1±0.6 86.2±0.4
Imp. Noise 76.9±0.9 88.9±0.2 89.4±0.3 88.5±0.5
Sky 4.1±0.5 79.1±0.5 86.7±0.5 86.9±0.3
Stripe 16.3±1.1 84.8±1.3 87.4±0.3 87.5±0.4

Avg High 0.0±0.0 92.3±0.6 96.7±0.6 95.6±0.6
Avg Low 41.2±0.3 83.4±0.2 87.8±0.1 87.2±0.1
Avg All 28.8±0.2 86.1±0.3 90.4±0.2 89.7±0.1
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Table C.11: 2000-shot (all data) accuracy across shifts: training different layers of a

CNN.

Conv1 Conv2 Conv3 FC1 FC2 FC1 + FC2

H1 0.0±0.1 80.0±9.9 97.6±0.2 98.7±0.1 98.6±0.1 98.8±0.1
H2 2.0±3.2 78.2±8.1 96.7±0.2 98.0±0.2 98.0±0.2 98.3±0.2
H3 0.0±0.0 81.9±2.8 97.7±0.4 98.6±0.3 98.7±0.2 98.8±0.0
Crystals 88.0±0.3 85.5±0.3 72.6±0.2 69.4±0.6 57.4±0.4 68.2±0.3
Fog 91.2±0.3 91.2±0.1 90.6±0.1 90.2±0.1 88.0±0.3 89.6±0.1
Gauss. Blur 90.1±0.1 90.9±0.1 90.3±0.0 90.2±0.1 86.7±0.1 89.7±0.2
Grass 89.1±0.2 86.1±0.5 56.6±1.1 40.8±0.9 17.0±0.3 38.8±1.0
Imp. Noise 89.8±0.1 89.7±0.2 88.2±0.1 88.3±0.2 86.6±0.3 87.6±0.2
Sky 89.0±0.1 88.2±0.3 81.7±0.1 75.2±0.3 48.8±0.4 73.7±0.4
Stripe 89.9±0.1 90.8±0.3 90.3±0.1 89.0±0.0 76.3±0.5 88.3±0.2

Avg High 0.7±1.1 80.0±5.1 97.4±0.2 98.5±0.1 98.4±0.1 98.6±0.0
Avg Low 89.6±0.1 88.9±0.0 81.5±0.2 77.6±0.1 65.8±0.1 76.5±0.1
Avg All 62.9±0.3 86.3±1.5 86.2±0.1 83.8±0.1 75.6±0.1 83.2±0.1

Table C.12: 2000-shot (all data) accuracy across shifts: comparison of different re-

sponses. Zero-shot is the accuracy before any updates are performed.

Zero-shot SGD FlexTune Upd. Rule

H1 0.0±0.0 97.9±0.1 98.8±0.1 98.7±0.2
H2 0.0±0.0 97.2±0.4 98.3±0.1 98.1±0.2
H3 0.0±0.0 98.2±0.1 98.8±0.0 98.7±0.3
Crystals 46.3±0.4 87.7±0.3 88.0±0.3 88.3±0.2
Fog 78.4±0.4 90.9±0.0 91.3±0.2 90.8±0.2
Gauss. Blur 60.4±2.1 90.5±0.1 90.9±0.1 90.6±0.1
Grass 5.8±0.2 89.2±0.1 89.1±0.2 89.5±0.4
Imp. Noise 76.9±0.9 89.3±0.2 89.8±0.1 89.5±0.2
Sky 4.1±0.5 89.1±0.2 89.0±0.1 89.4±0.1
Stripe 16.3±1.1 90.6±0.3 90.8±0.3 90.0±0.2

Avg High 0.0±0.0 97.8±0.1 98.6±0.0 98.5±0.1
Avg Low 41.2±0.3 89.6±0.1 89.8±0.0 89.7±0.1
Avg All 28.8±0.2 92.1±0.1 92.5±0.0 92.4±0.0
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